
Calculate the voltage gain, current gain, input impedance, and output impedance for the amplifier shown in Figure 19.131 in the textbook.

Answer to Problem 92P
The voltage gain, current gain, input impedance, and output impedance for the amplifier are
Explanation of Solution
Given Data:
Refer to Figure 19.131 in the textbook for the amplifier circuit.
From the given amplifier circuit, the internal resistance
Formula used:
Refer to Equation 19.73 in the textbook and write the expression for voltage gain of a amplifier in terms of hybrid parameters as follows:
Here,
Write the expression for current gain of the amplifier as follows:
Here,
Write the expression for input impedance of the amplifier as follows:
Calculation:
Redraw the given circuit as shown in Figure 1.
From Figure 1, write the expression for emitter current as follows:
Write the expression for base voltage from the circuit in Figure 1 as follows:
Write the expression for collector current as follows:
Write the expression for collector voltage as follows:
From Equation (7), substitute
Rearrange the expression as follows:
From Equation (2), substitute
Substitute 100 for
From Equation (6), substitute
Rearrange the expression as follows:
Rearrange the expression in Equation (5) as follows:
From Equations (7) and (9), substitute
Rearrange the expression as follows:
Substitute 100 for
Simplify the expression as follows:
From Equation (1), substitute
From Equation (9), substitute
Rearrange the expression as follows:
Substitute 100 for
From Equation (3), substitute
Consider output voltage
Apply KVL to the input loop for the circuit in Figure 2 as follows:
Substitute 1 for
Apply KCL at the output node for the circuit in Figure 2 as follows:
Substitute 1 for
Rearrange the expression as follows:
From Equation (12), substitute
Substitute 100 for
Write the expression for output impedance of the amplifier as follows:
Substitute 1 for
Conclusion:
Thus, the voltage gain, current gain, input impedance, and output impedance for the amplifier are
Want to see more full solutions like this?
Chapter 19 Solutions
Fundamentals of Electric Circuits
- 072-kVA, 208-V, Y-connected, three-phase synchronous generator delivers the rated load at 0.866 pf lagging. The armature winding resistance is 20 mQ/phase. The core loss is 800 W. The friction and the windage loss is 350 W. The field winding is connected across a 120-V DC source and the field current is 5.5 A. Calculate the efficiency and voltage regulation of the generator.arrow_forward11.32 A Y-D ideal three-phase transformer with a turns ratio of1 : 10 supplies a 32 kVA load at a line voltage of 208 V. Determinethe line voltage and line current at the primary sidearrow_forward11.33 A D-Y ideal three-phase transformer supplies a 32-kVAload at a line voltage of 240 V. If the line voltage at the primaryside is 51.96 V, what is the turns ratio?arrow_forward
- I would like assistance with the electrical system of a streetcar/train, specifically in performing calculations related to speed, torque, and power for the motor and the train.Streetcar Gear SystemFrom my research, I have found that streetcars typically do not use traditional gear systems. Instead, the motor directly drives the truck (the assembly that holds the wheels and axles) to achieve the desired speed and torque required by the vehicle. The motor's speed and torque are controlled by a control box, which regulates the motor's performance according to the operational requirements. Truck LimitationsThe truck that will be used has certain limitations, such as: Maximun allowable speed: 50 mph Maximum motor output: 75 hp Motor specification: The specification of the motor is the following:Output power 200 HPSpeed 1150/2000 RPMArm’s voltage 600 VArm’s current 317 AFields volts 220 VField Amps 8/3Field Winding CompoundTorque calculation of the…arrow_forward7. Find the currents I₁ and 12 in the following circuit, (16 points) - node V=IR 18ΚΩ 12ΚΩ RE 12 V + ww -Supernode 6ΚΩ 4k9k 12 RE22arrow_forward"Can you explain the method of choosing the direction?" Question- A plane wave in a non-magnetic medium = Нр 1 has an electric field- E = 50 sin(10®t +2)ây V m The standard equation of the electric field is- How can E = Eosin(t + Bây V m ✓ explan how (C. i)- The direction of the propagation is-âk = - âz the direction |arrow_forward
- Express this graph/signal as a sum of singularity functions. Please give a proper solution.arrow_forward2) A 208 V, four-pole, 60 Hz, Y-connected, wound-rotor induction motor has a rated power of 30 HP. The components of its equivalent circuit are R1 = 0.100 R2 = 0.070 XM = 10.0 X1 = 0.210 X2 = 0.210 Pmec = 500 W Psup ~ 0 Pcore = 400 W For a slip of 0.05, find: a) The line current b) The stator copper losses PcE c) The air gap power PEF d) The power converted from mechanical to electrical form Pconv e) The induced torque _ind f) load torque _load g) The total efficiency of the machine h) The speed of the motor in revolutions per minute and in radians per secondarrow_forward5. There are three sources that would affect the current flow in this circuit. Find the current through the 4k2 resistor that is caused solely by the 24V source (i.e., remove the 2mA and 12V sources using the correct methods). (20 points) 24 V + 9k, ww www 4kS 2mA 24ΚΩ www ++ 12V www 6k 24ΚΩarrow_forward
- "Can you explain the method of finding the direction?" the electric field in free space is given by ety E: 50 Cos [2π 10 t - Bz ] a) find the direction of the wave propagation b) Calculate W, B, A, S V/marrow_forwardAthle phase a.c. distributor AB has: The distance from A to B is 500 m. The distance from A to C is 800 m. The impedance of each section is (6+j 8) /km. A B C The voltage at the far end is maintained at 250 volt. Find: sending voltage, sending current, supply power factor and 80 A 60 A total voltage drop. 0.8 lag. P.f 0.6 lead. p.farrow_forwardThe transfer function H(s) = Y(s)/X(s) = Vo(s)/Vi(s) should be found from the circuit given that the initial conditions are equal to 0. Do not answer using AI Chatbots. PLEASEarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





