
(a)
Interpretation:
The given
Concept introduction:
Oxidation number method to balance ionic equation involve:-
- Assign the oxidation number to each element.
- Check which element is oxidized and which element is reduced.
- Check the change in oxidation number for the elements which are oxidized and reduced.
- Balance the change in oxidation number by adjusting the coefficients in the equation.

Answer to Problem 81A
Explanation of Solution
The given redox reaction is:
Assigning the oxidation number-
The oxidation numbers of atoms shows that
Change in oxidation number of
Change in oxidation number of
Thus adjusting the coefficients:
Adjusting the rest atoms:
(b)
Interpretation:
The given redox reaction is to be balanced.
Concept introduction:
Oxidation number method to balance ionic equation in acidic solution involve:-
- Assign the oxidation number to each element.
- Check which element is oxidized and which element is reduced.
- Check the change in oxidation number for the elements which are oxidized and reduced.
- Balance the change in oxidation number by adjusting the coefficients in the equation.
- Then add enough hydrogen ions to balance the charge and water molecules to the equation to balance hydrogen atoms on both sides.

Answer to Problem 81A
Explanation of Solution
The given redox reaction is:
Assigning the oxidation number-
The oxidation numbers of atoms shows that
Change in oxidation number of
Change in oxidation number of
Thus adjusting the coefficients:
Balancing the atoms:
Now adding hydrogen ions on right side of equation to balance negative charge
Adding water to left side:
Chapter 19 Solutions
Glencoe Chemistry: Matter and Change, Student Edition
Additional Science Textbook Solutions
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Introductory Chemistry (6th Edition)
Chemistry: The Central Science (14th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Biological Science (6th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- The initial rates method can be used to determine the rate law for a reaction. using the data for the reaction below, what is the rate law for reaction? A+B-C - ALA] At (mot Trial [A] (mol) (MD 2 1 0.075 [B]( 0.075 mo LS 01350 2 0.075 0.090 0.1944 3 0.090 0.075 0.1350 Report value of k with two significant Figurearrow_forwardCompare trials 1 and 2 where [B] is constant. The rate law can be written as: rate = k[A][B]". rate2 0.090 = 9. rate1 0.010 [A]m 6.0m = 3m [A] m 2.0marrow_forwardCan you please explain this problem to me and expand it so I can understand the full Lewis dot structure? Thanks!arrow_forward
- Can you please explain this problem to me and expand it so I can understand the full Lewis dot structure? Thanks!arrow_forwardCan you please explain this problem to me and expand it so I can understand the full Lewis dot structure? Thanks!arrow_forwardPlease answer the questions in the photos and please revise any wrong answers. Thank youarrow_forward
- (Please be sure that 7 carbons are available in the structure )Based on the 1H NMR, 13C NMR, DEPT 135 NMR and DEPT 90 NMR, provide a reasoning step and arrive at the final structure of an unknown organic compound containing 7 carbons. Dept 135 shows peak to be positive at 128.62 and 13.63 Dept 135 shows peak to be negative at 130.28, 64.32, 30.62 and 19.10.arrow_forward-lease help me answer the questions in the photo.arrow_forwardDefine electronegativity.arrow_forward
- Why do only the immediately adjacent H's show up in the number of peaks? Are there normally peaks for the H's that are 2-3 carbons away?arrow_forwardPlease help me understand this question. Thank you. Organic Chem 1arrow_forwardFor the reaction below, the concentrations at equilibrium are [SO₂] = 0.50 M, [0] = 0.45 M, and [SO3] = 1.7 M. What is the value of the equilibrium constant, K? 2SO2(g) + O2(g) 2SO3(g) Report your answer using two significant figures. Provide your answer below:arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





