(a)
Interpretation:
Balanced chemical equation is to be written using half reactions.
Concept introduction:
A redox reaction is balanced if number of atoms and net charge on both sides is equal
To balance the reaction using half reaction method, following rules are used:
- Assign the oxidation number to each element.
- Check which element is oxidized and which element is reduced. Write
oxidation and reduction half reactions. - Check the change in oxidation number for the elements which are oxidized and reduced.
- Adjust the coefficients so that number of electrons lost in oxidation is equal to electrons gained in reduction.
- Add the balanced half reactions.
Answer to Problem 77A
The balanced equation is:
Explanation of Solution
Oxidation half reaction:
Reduction half reaction:
Number of electrons lost = electrons gained
Therefore adding both equatios,
(b)
Interpretation:
Balanced chemical equation is to be written using half reactions.
Concept introduction:
A redox reaction is balanced if number of atoms and net charge on both sides is equal.
To balance the reaction using half reaction method, following rules are used:
- Assign the oxidation number to each element.
- Check which element is oxidized and which element is reduced. Write oxidation and reduction half reactions.
- Check the change in oxidation number for the elements which are oxidized and reduced.
- Then add enough hydrogen ions and water molecules to the equation to balance hydrogen atoms on both sides.
- Adjust the coefficients so that number of electrons lost in oxidation is equal to electrons gained in reduction.
- Add the balanced half reactions.
Answer to Problem 77A
The balanced equation is:
Explanation of Solution
Oxidation half reaction:
Reduction half reaction:
Balancing the charge by adding hydrogen ion,
Balancing the other atoms:
Therefore adding both equations after multiplying oxidation half reaction by 2 and reduction half reaction by 3
(c)
Interpretation:
Balanced chemical equation is to be written using half reactions.
Concept introduction:
A redox reaction is balanced if number of atoms and net charge on both sides is equal.
To balance the reaction using half reaction method, following rules are used:
- Assign the oxidation number to each element.
- Check which element is oxidized and which element is reduced. Write oxidation and reduction half reactions.
- Check the change in oxidation number for the elements which are oxidized and reduced.
- Then add enough hydrogen ions and water molecules to the equation to balance hydrogen atoms on both sides.
- Adjust the coefficients so that number of electrons lost in oxidation is equal to electrons gained in reduction.
- Add the balanced half reactions.
Answer to Problem 77A
The balanced equation is:
Explanation of Solution
Oxidation half reaction:
Reduction half reaction:
Balancing oxidation half reaction by adding hydrogen ion,
Balancing the other atoms:
Therefore adding both equations after multiplying reduction half reaction by 4
Chapter 19 Solutions
Glencoe Chemistry: Matter and Change, Student Edition
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Organic Chemistry (8th Edition)
Campbell Biology (11th Edition)
Human Anatomy & Physiology (2nd Edition)
Introductory Chemistry (6th Edition)
Campbell Biology in Focus (2nd Edition)
- Use the following data for an unknown gas at 300 K to determine the molecular mass of the gas.arrow_forward2. Provide a complete retrosynthetic analysis and a complete forward synthetic scheme to make the following target molecule from the given starting material. You may use any other reagents necessary. Brarrow_forward146. Use the following data for NH3(g) at 273 K to determine B2p (T) at 273 K. P (bar) 0.10 0.20 0.30 0.40 0.50 0.60 (Z -1)/10-4 1.519 3.038 4.557 6.071 7.583 9.002 0.70 10.551arrow_forward
- 110. Compare the pressures given by (a) the ideal gas law, (b) the van der Waals equation, and (c) the Redlic-Kwong equation for propane at 400 K and p = 10.62 mol dm³. The van der Waals parameters for propane are a = 9.3919 dm6 bar mol-2 and b = 0.090494 dm³ mol−1. The Redlich-Kwong parameters are A = 183.02 dm bar mol-2 and B = 0.062723 dm³ mol-1. The experimental value is 400 bar.arrow_forwardResearch in surface science is carried out using stainless steel ultra-high vacuum chambers with pressures as low as 10-12 torr. How many molecules are there in a 1.00 cm3 volume at this pressure and at a temperature of 300 K? For comparison, calculate the number of molecules in a 1.00 cm3 volume at atmospheric pressure and room temperature. In outer space the pressure is approximately 1.3 x 10-11 Pa and the temperature is approximately 2.7 K (determined using the blackbody radiation of the universe). How many molecules would you expect find in 1.00 cm3 of outer space?arrow_forwardDraw the predominant form of arginine at pH = 7.9. The pKa of the side chain is 12.5. Include proper stereochemistry. H2N OH NH H₂N 'N' છ H pH = 7.9 Select to Drawarrow_forward
- Please correct answer and don't used hand raitingarrow_forward142. A mixture of H2(g) and N2(g) has a density of 0.216 g/liter at 300 K and 500 torr. What is the mole fraction composition of the mixture?arrow_forwardOne liter of N2(g) at 2.1 bar and two liters of Ar(g) at 3.4 bar are mixed in a 4.0 liter flask to form an ideal gas mixture. Calculate the value of the final pressure of the mixture if the initial and final temperature of the gases are the same. Repeat this calculation if the initial temperature of the N2(g) and Ar(g) are 304 K and 402 K, respectively, and the final temperature of the mixture is 377 K.arrow_forward
- 10 5 4. These four 'H NMR spectra were recorded from different isomers with molecular formula CsH,CIO. They all contain a carbonyl group. Determine the structure of the different isomers. 0 10 5 0 10 5 10 9 8 7 6 5 4 3. 1 0 9 10 10 66 9 0 10 9 10 5 1 8 7 6 5 3 2 -a 8 7 6 5 1 10 9 8 7 6 5 22 2 1 0 3 2 16 1 0 3 2 1 2 6 0arrow_forwardUse the expression below to ⚫ calculate its value and report it to the proper number of significant digits (you may need to round your answer). ⚫ calculate the % error (or % relative error or % inherent error) ⚫ calculate the absolute error. (20.54±0.02 × 0.254±0.003) / (3.21±0.05) = Value: % Error: Absolute error: ± | % (only 1 significant digit) (only 1 significant digit)arrow_forwardIn each case (more ductile, more brittle, more tough or resistant), indicate which parameter has a larger value. parameter Elastic limit Tensile strength more ductile Strain at break Strength Elastic modulus more fragile more tough or resistantarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY