(III) A house thermostat is normally set to 22°C, but at night it is turned down to 12°C for 9.0 h. Estimate how much more heat would be needed (state as a percentage of daily usage) if the thermostat were not turned down at night. Assume that the outside temperature averages 0°C for the 9.0 h at night and 8°C for the remainder of the day, and that the heat loss from the house is proportional to the difference in temperature inside and out. To obtain an estimate from the data, you will have to make other simplifying assumptions; state what these are.
(III) A house thermostat is normally set to 22°C, but at night it is turned down to 12°C for 9.0 h. Estimate how much more heat would be needed (state as a percentage of daily usage) if the thermostat were not turned down at night. Assume that the outside temperature averages 0°C for the 9.0 h at night and 8°C for the remainder of the day, and that the heat loss from the house is proportional to the difference in temperature inside and out. To obtain an estimate from the data, you will have to make other simplifying assumptions; state what these are.
(III) A house thermostat is normally set to 22°C, but at night it is turned down to 12°C for 9.0 h. Estimate how much more heat would be needed (state as a percentage of daily usage) if the thermostat were not turned down at night. Assume that the outside temperature averages 0°C for the 9.0 h at night and 8°C for the remainder of the day, and that the heat loss from the house is proportional to the difference in temperature inside and out. To obtain an estimate from the data, you will have to make other simplifying assumptions; state what these are.
I do not understand the process to answer the second part of question b. Please help me understand how to get there!
Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative.
Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
[most negative
91 = +1nC
92 = +1nC
91 = -1nC
93 = +1nC
92- +1nC
93 = +1nC
-1nC
92- -1nC
93- -1nC
91= +1nC
92 = +1nC
93=-1nC
91
+1nC
92=-1nC
93=-1nC
91 = +1nC
2 = −1nC
93 = +1nC
The correct ranking cannot be determined.
Reset
Help
most positive
Part A
Find the x-component of the electric field at the origin, point O.
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz =
Η ΑΣΦ
?
N/C
Submit
Part B
Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O?
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz=
Η ΑΣΦ
?
N/C
Chapter 19 Solutions
Physics for Scientists and Engineers with Modern Physics
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY