
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 20Q
To determine
The reason for which the temperature of a gas increases when it is adiabatically compressed.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
You have just bought a new bicycle. On your first riding trip, it seems that the bike comes to rest relatively quickly after you stop pedaling and let the bicycle coast on flat ground. You call the bicycle shop from which you purchased the vehicle and describe the problem. The technician says
that they will replace the bearings in the wheels or do whatever else is necessary if you can prove that the frictional torque in the axle of the wheels is worse than -0.02 N . m. At first, you are discouraged by the technical sound of what you have been told and by the absence of any tool to
measure torque in your garage. But then you remember that you are taking a physics class! You take your bike into the garage, turn it upside down and start spinning the wheel while you think about how to determine the frictional torque. The driveway outside the garage had a small
puddle, so you notice that droplets of water are flying off the edge of one point on the tire tangentially, including drops that…
2nd drop down is "up" or "down"
Romeo (79.0 kg) entertains Juliet (57.0 kg) by playing his guitar from the rear of their boat at rest in still water, 2.70 m away from Juliet, who is in the front of the boat. After the serenade, Juliet carefully moves to the rear of the boat (away from shore) to plant a kiss on Romeo's cheek.
(a) How far (in m) does the 81.0 kg boat move toward the shore it is facing?
m
(b) What If? If the lovers both walk toward each other and meet at the center of the boat, how far (in m) and in what direction does the boat now move?
magnitude
m
direction
---Select---
Chapter 19 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 19.2 - Return to the Chapter-Opening Question, page 496,...Ch. 19.5 - Prob. 1BECh. 19.5 - How much more ice at 10C would be needed in...Ch. 19.6 - What would be the internal energy change in...Ch. 19.7 - Is the work done by the gas in process ADB of Fig....Ch. 19.7 - In Example 1910, if the heat lost from the gas in...Ch. 19.10 - Fanning yourself on a hot day cools you by (a)...Ch. 19 - What happens to the work done on a jar of orange...Ch. 19 - Prob. 2QCh. 19 - Prob. 3Q
Ch. 19 - Prob. 4QCh. 19 - Prob. 5QCh. 19 - Why does water in a canteen stay cooler if the...Ch. 19 - Explain why burns caused by steam at 100C on the...Ch. 19 - Prob. 8QCh. 19 - Will potatoes cook faster if the water is boiling...Ch. 19 - Prob. 10QCh. 19 - Prob. 11QCh. 19 - Use the conservation of energy to explain why the...Ch. 19 - In an isothermal process, 3700 J of work is done...Ch. 19 - Explorers on failed Arctic expeditions have...Ch. 19 - Why is wet sand at the beach cooler to walk on...Ch. 19 - When hot-air furnaces are used to heat a house,...Ch. 19 - Is it possible for the temperature of a system to...Ch. 19 - Discuss how the first law of thermodynamics can...Ch. 19 - Explain in words why CP is greater than CV.Ch. 19 - Prob. 20QCh. 19 - An ideal monatomic gas is allowed to expand slowly...Ch. 19 - Ceiling fans are sometimes reversible, so that...Ch. 19 - Goose down sleeping bags and parkas are often...Ch. 19 - Microprocessor chips nowadays have a heat sink...Ch. 19 - Sea breezes are often encountered on sunny days at...Ch. 19 - The Earth cools off at night much more quickly...Ch. 19 - Explain why air-temperature readings are always...Ch. 19 - A premature baby in an incubator can be...Ch. 19 - Prob. 29QCh. 19 - A 22C day is warm, while a swimming pool at 22C...Ch. 19 - Prob. 32QCh. 19 - Prob. 33QCh. 19 - Prob. 34QCh. 19 - Prob. 35QCh. 19 - An emergency blanket is a thin shiny...Ch. 19 - Explain why cities situated by the ocean tend to...Ch. 19 - (I) To what temperature will 8700 J of heat raise...Ch. 19 - Prob. 2PCh. 19 - Prob. 3PCh. 19 - (II) A British thermal unit (Btu) is a unit of...Ch. 19 - Prob. 5PCh. 19 - Prob. 6PCh. 19 - (I) An automobile cooling system holds 18 L of...Ch. 19 - Prob. 8PCh. 19 - (II) (a) How much energy is required to bring a...Ch. 19 - Prob. 10PCh. 19 - Prob. 11PCh. 19 - (II) A hot iron horseshoe (mass = 0.40kg), just...Ch. 19 - (II) A 31.5-g glass thermometer reads 23.6C before...Ch. 19 - Prob. 14PCh. 19 - (II) When a 290-g piece of iron at 180C is placed...Ch. 19 - (II) The heat capacity. C, of an object is defined...Ch. 19 - (II) The 1.20-kg head of a hammer has a speed of...Ch. 19 - (I) How much heat is needed to melt 26.50kg of...Ch. 19 - (I) During exercise, a person may give off 180...Ch. 19 - (II) A 35g ice cube at its melting point is...Ch. 19 - (II) High-altitude mountain climbers do not eat...Ch. 19 - (II) An iron boiler of mass 180 kg contains 730kg...Ch. 19 - (II) In a hot days race, a bicyclist consumes 8.0...Ch. 19 - (II) The specific heat of mercury is 138 J/kg C....Ch. 19 - Prob. 25PCh. 19 - (II) A 58-kg ice-skater moving at 7.5 m/s glides...Ch. 19 - (I) Sketch a PV diagram of the following process:...Ch. 19 - (I) A gas is enclosed in a cylinder fitted with a...Ch. 19 - (II) The pressure in an ideal gas is cut in half...Ch. 19 - (II) A 1.0-L volume of air initially at 3.5 atm of...Ch. 19 - (II) Consider the following two-step process. Heat...Ch. 19 - (II) The PV diagram in Fig. 1931 shows two...Ch. 19 - (II) Suppose 2.60 mol of an ideal gas of volume V1...Ch. 19 - (II) In an engine, an almost ideal gas is...Ch. 19 - (II) One and one-half moles of an ideal monatomic...Ch. 19 - (II) Determine (a) the work done and (b) the...Ch. 19 - (II) How much work is done by a pump to slowly...Ch. 19 - (II) When a gas is taken from a to c along the...Ch. 19 - (III) In the process of taking a gas from state a...Ch. 19 - (III) Suppose a gas is taken clockwise around the...Ch. 19 - (III) Determine the work done by 1.00 mol of a van...Ch. 19 - (I) What is the internal energy of 4.50 mol of an...Ch. 19 - Prob. 43PCh. 19 - Prob. 44PCh. 19 - Prob. 45PCh. 19 - What gas is it? (II) Show that the work done by n...Ch. 19 - (II) An audience of 1800 fills a concert hall of...Ch. 19 - Prob. 48PCh. 19 - Prob. 49PCh. 19 - (III) A 1.00-mol sample of an ideal diatomic gas...Ch. 19 - (I) A 1.00-mol sample of an ideal diatomic gas,...Ch. 19 - (II) Show, using Eqs. 196 and 1915, that the work...Ch. 19 - (III) A 3.65-mol sample of an ideal diatomic gas...Ch. 19 - (II) An ideal monatomic gas, consisting of 2.8 mol...Ch. 19 - (III) A 1.00-mol sample of an ideal monatomic gas,...Ch. 19 - (III) Consider a parcel of air moving to a...Ch. 19 - Prob. 57PCh. 19 - (I) One end of a 45-cm-long copper rod with a...Ch. 19 - (II) How long does it take the Sun to melt a block...Ch. 19 - (II) Heat conduction to skin. Suppose 150 W of...Ch. 19 - (II) A ceramic teapot ( = 0.70) and a shiny one (...Ch. 19 - (II) A copper rod and an aluminum rod of the same...Ch. 19 - Prob. 63PCh. 19 - Prob. 64PCh. 19 - (III) A house thermostat is normally set to 22C,...Ch. 19 - (III) Approximately how long should it take 9.5 kg...Ch. 19 - (III) A cylindrical pipe has inner radius R1 and...Ch. 19 - (III) Suppose the insulating qualities of the wall...Ch. 19 - Prob. 69GPCh. 19 - (a) Find the total power radiated into space by...Ch. 19 - Prob. 71GPCh. 19 - A mountain climber wears a goose-down jacket 3.5...Ch. 19 - Prob. 73GPCh. 19 - Estimate the rate at which heat can he conducted...Ch. 19 - A marathon runner has an average metabolism rate...Ch. 19 - A house has well-insulated walls 19.5 cm thick...Ch. 19 - In a typical game of squash (Fig. 19-36), two...Ch. 19 - A bicycle pump is a cylinder 22 cm long and 3.0 cm...Ch. 19 - Prob. 79GPCh. 19 - The temperature within the Earths crust increases...Ch. 19 - An ice sheet forms on a lake. The air above the...Ch. 19 - An iron meteorite melts when it enters the Earths...Ch. 19 - A scuba diver releases a 3.60-cm-diameter...Ch. 19 - A reciprocating compressor is a device that...Ch. 19 - The temperature of the glass surface of a 75-W...Ch. 19 - Suppose 3.0 mol of neon (an ideal monatomic gas)...Ch. 19 - At very low temperatures, the molar specific heat...Ch. 19 - A diesel engine accomplishes ignition without a...Ch. 19 - When 6.30 105 J of heat is added to a gas...Ch. 19 - In a cold environment, a person can lose heat by...Ch. 19 - Prob. 91GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 2nd image is the same for all drop downsarrow_forwardA mobile is constructed of light rods, light strings, and beach souvenirs as shown in the figure below. If m4 = 12.0 g, find values (in g) for the following. (Let d₁ = 3.20 cm, d₂ = 5.10 cm, d3 = 1.00 cm, d4 = 5.80 cm, d5 = 2.40 cm, and d6 = 3.20 cm.) d₁ d2 d3 d4 Mg d5 d6 mg MA mi (a) m₁ = g (b) m2 = (c) m3 = g g (d) What If? If m₁ accidentally falls off and shatters when it strikes the floor, the rod holding m will move to a vertical orientation so that m hangs directly below the end of the rod supporting m₂. To what values should m₂ equilibrium and be oriented horizontally? (Enter your answers in g.) m2 = m3 = and m3 be adjusted so that the other two rods will remain inarrow_forwardAn automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg . m²) of the tire about an axis perpendicular to the page through its center? 33.0 cm 30.5 cm kg. m² 16.5 cm Sidewall Treadarrow_forward
- John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.) i (a) What force (in N) must John apply along the handles to just start the wheel over the brick? N (b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick? magnitude direction kN ° clockwise from the -x-axisarrow_forwardYour neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hCM = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk = 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.) Narrow_forwardThree solid, uniform boxes are aligned as in the figure below. Find the x- and y-coordinates (in m) of the center of mass of the three boxes, measured from the bottom left corner of box A. (Consider the three-box system.) HINT 0.200 m 0.280 m 0.120 m y A B C 0.350 m Origin 0.750 kg 1.00 kg 0.650 kg Х ст E m m Уст xarrow_forward
- Consider the truss shown in the figure, built from three struts attached by three pins. The truss supports a downward force of F = 1,080 N applied at the point B. Assume the mass of the truss is negligible, the pins are frictionless, and the supports at A and C are also frictionless. 01 F B nc 02 C (a) Assuming 0₁ = 26.0° and 0 2 = 51.0°, what are n and n? (Enter the magnitudes in N.) ΠΑ пс = = N N (b) The force any strut applies on a pin must be directed along the length of the strut as a force of tension or compression. What are the directions of the forces that the struts exert on the pins joining them? strut AB on joint A: ---Select--- strut AB on joint B: strut BC on joint B: strut BC on joint C: strut AC on joint A: strut AC on joint C: |---Select--- --Select--- --Select--- --Select--- |---Select--- ✓ ✓ ✓ Find the force of tension or of compression (in N) in each of the three struts. bar AB N N bar BC bar AC Narrow_forwardThe center of mass of the arm shown in the figure is at point A. Find the magnitudes (in N) of the tension force F+ and the force Fs which hold the arm in equilibrium. (Let = 22.5°.) Assume the weight of the arm is 34.8 N. N |Fsl N F 8.00 cm -29.0 cm iarrow_forwardHi, Please type the whole transcript correctly using comma and periods and as needed. Please mention the name of each scientist says. The picture of a video on YouTube has been uploaded down.arrow_forward
- The triangular coil of wire in the drawing is free to rotate about an axis that is attached along side AC. The current in the loop is 4.64 A, and the magnetic field (parallel to the plane of the loop and side AB) is B = 2.1 T. (a) What is the magnetic moment of the loop, and (b) what is the magnitude of the net torque exerted on the loop by the magnetic field? 55.0° 109 B B 2.00 m.arrow_forwardThe triangular coil of wire in the drawing is free to rotate about an axis that is attached along side AC. The current in the loop is 4.64 A, and the magnetic field (parallel to the plane of the loop and side AB) is B = 2.1 T. (a) What is the magnetic moment of the loop, and (b) what is the magnitude of the net torque exerted on the loop by the magnetic field?arrow_forward12 volt battery in your car supplies 1700 Joules of energy to run the headlights during a particular nighttime drive. How much charge must have flowed through the battery to provide this much energy? Give your answer as the number of Coulombs.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning