Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 34PS
One half-cell in a voltaic cell is constructed from an iron electrode in an Fe(NO3)2 solution of unknown concentration. The other half-cell is a standard hydrogen electrode. A potential of 0.49 V is measured for this cell. Use this information to calculate the concentration of Fe2+(aq).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Chemistry & Chemical Reactivity
Ch. 19.1 - Prob. 2CYUCh. 19.1 - Prob. 3CYUCh. 19.1 - 1. Copper(II) sulfide reacts with nitric acid...Ch. 19.1 - Prob. 2RCCh. 19.1 - The balanced half-reaction for Br2 BrO3 in basic...Ch. 19.2 - Describe how to set up a voltaic cell using the...Ch. 19.2 - The following overall chemical reaction occurs in...Ch. 19.2 - Prob. 1RCCh. 19.2 - Prob. 2RCCh. 19.2 - Prob. 3RC
Ch. 19.3 - Prob. 1RCCh. 19.3 - Prob. 2RCCh. 19.4 - (a) Rank the following metals in their ability to...Ch. 19.4 - Prob. 1RCCh. 19.4 - Prob. 2RCCh. 19.4 - Prob. 3RCCh. 19.4 - Prob. 1QCh. 19.4 - Prob. 2QCh. 19.4 - Prob. 3QCh. 19.5 - A voltaic cell is set up with an aluminum...Ch. 19.5 - Check Your Understanding
The half-cells Fe2+(aq,...Ch. 19.5 - Prob. 1RCCh. 19.6 - Prob. 1CYUCh. 19.6 - Calculate the equilibrium constant at 25 C for the...Ch. 19.6 - Prob. 1RCCh. 19.7 - Predict the chemical reactions that will occur at...Ch. 19.7 - Prob. 1RCCh. 19.8 - Prob. 1CYUCh. 19.8 - 1. If you wish to convert 0.0100 mol of Au3+ (aq)...Ch. 19.8 - Prob. 1QCh. 19.8 - Use standard reduction potentials to determine...Ch. 19.8 - Prob. 3QCh. 19.8 - The overall reaction for the production of Cu(OH)2...Ch. 19.8 - Assume the following electrochemical cell...Ch. 19 - Write balanced equations for the following...Ch. 19 - Write balanced equations for the following...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Prob. 6PSCh. 19 - A voltaic cell is constructed using the reaction...Ch. 19 - A voltaic cell is constructed using the reaction...Ch. 19 - The half-cells Fe2+(aq) | Fe(s) and O2(g) | H2O...Ch. 19 - The half cells Sn2+(aq) |Sn(s) and Cl2(g) |Cl(aq)...Ch. 19 - For each of the following electrochemical cells,...Ch. 19 - For each of the following electrochemical cells,...Ch. 19 - Use cell notation to depict an electrochemical...Ch. 19 - Use cell notation to depict an electrochemical...Ch. 19 - What are the similarities and differences between...Ch. 19 - What reactions occur when a lead storage battery...Ch. 19 - Calculate the value of E for each of the following...Ch. 19 - Calculate the value of E for each of the following...Ch. 19 - Balance each of the following unbalanced...Ch. 19 - Balance each of the following unbalanced...Ch. 19 - Consider the following half-reactions: (a) Based...Ch. 19 - Prob. 22PSCh. 19 - Which of the following elements is the best...Ch. 19 - Prob. 24PSCh. 19 - Which of the following ions is most easily...Ch. 19 - From the following list, identify the ions that...Ch. 19 - (a) Which halogen is most easily reduced in acidic...Ch. 19 - Prob. 28PSCh. 19 - Calculate the potential delivered by a voltaic...Ch. 19 - Calculate the potential developed by a voltaic...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - Calculate rG and the equilibrium constant for the...Ch. 19 - Prob. 36PSCh. 19 - Use standard reduction potentials (Appendix M) for...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Prob. 41PSCh. 19 - Prob. 42PSCh. 19 - Which product, O2 or F2, is more likely to form at...Ch. 19 - Which product, Ca or H2, is more likely to form at...Ch. 19 - An aqueous solution of KBr is placed in a beaker...Ch. 19 - An aqueous solution of Na2S is placed in a beaker...Ch. 19 - In the electrolysis of a solution containing...Ch. 19 - In the electrolysis of a solution containing...Ch. 19 - Electrolysis of a solution of CuSO4(aq) to give...Ch. 19 - Electrolysis of a solution of Zn(NO3)2(aq) to give...Ch. 19 - A voltaic cell can be built using the reaction...Ch. 19 - Assume the specifications of a Ni-Cd voltaic cell...Ch. 19 - Prob. 53GQCh. 19 - Balance the following equations. (a) Zn(s) +...Ch. 19 - Magnesium metal is oxidized, and silver ions are...Ch. 19 - You want to set up a series of voltaic cells with...Ch. 19 - Prob. 57GQCh. 19 - Prob. 58GQCh. 19 - In the table of standard reduction potentials,...Ch. 19 - Prob. 60GQCh. 19 - Four voltaic cells are set up. In each, one...Ch. 19 - The following half-cells are available: (i)...Ch. 19 - Prob. 63GQCh. 19 - Prob. 64GQCh. 19 - A potential of 0.142 V is recorded (under standard...Ch. 19 - Prob. 66GQCh. 19 - The standard potential, E, for the reaction of...Ch. 19 - An electrolysis cell for aluminum production...Ch. 19 - Electrolysis of molten NaCl is done in cells...Ch. 19 - A current of 0.0100 A is passed through a solution...Ch. 19 - A current of 0.44 A is passed through a solution...Ch. 19 - Prob. 72GQCh. 19 - Prob. 73GQCh. 19 - Prob. 74GQCh. 19 - The products formed in the electrolysis of aqueous...Ch. 19 - Predict the products formed in the electrolysis of...Ch. 19 - Prob. 77GQCh. 19 - The metallurgy of aluminum involves electrolysis...Ch. 19 - Prob. 79GQCh. 19 - Prob. 80GQCh. 19 - Prob. 81GQCh. 19 - Prob. 82GQCh. 19 - Two Ag+(aq) | Ag(s) half-cells are constructed....Ch. 19 - Calculate equilibrium constants for the following...Ch. 19 - Prob. 85GQCh. 19 - Use the table of standard reduction potentials...Ch. 19 - Prob. 87GQCh. 19 - Prob. 88GQCh. 19 - Prob. 89GQCh. 19 - A voltaic cell is constructed in which one...Ch. 19 - An expensive but lighter alternative to the lead...Ch. 19 - The specifications for a lead storage battery...Ch. 19 - Manganese may play an important role in chemical...Ch. 19 - Prob. 94GQCh. 19 - Iron(II) ion undergoes a disproportionation...Ch. 19 - Copper(I) ion disproportionates to copper metal...Ch. 19 - Prob. 97GQCh. 19 - Prob. 98GQCh. 19 - Consider an electrochemical cell based on the...Ch. 19 - Prob. 100ILCh. 19 - A silver coulometer (Study Question 106) was used...Ch. 19 - Four metals, A, B, C, and D, exhibit the following...Ch. 19 - Prob. 103ILCh. 19 - The amount of oxygen, O2, dissolved in a water...Ch. 19 - Prob. 105SCQCh. 19 - The free energy change for a reaction, rG, is the...Ch. 19 - Prob. 107SCQCh. 19 - (a) Is it easier to reduce water in acid or base?...Ch. 19 - Prob. 109SCQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- An electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday Constant?arrow_forwardGiven this reaction, its standard potential, and the standard half-cell potential of 0.34 V for the Cu2+ |Cu half-cell, calculate E° for the Fe(s)|Fe2+(aq) half-cell.arrow_forwardConsider the electrolysis of water in the presence of very dilute H2SO4. What species is produced at the anode? Atthe cathode? What are the relative amounts of the speciesproduced at the two electrodes?arrow_forward
- An electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardAn aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forward
- You want to set up a series of voltaic cells with specific cell potentials. A Zn2+(aq, 1.0 M)| Zn(s) half-cell is in one compartment. Identify several half-cells that you could use so that the cell potential will be close to (a) 1.1 V and (b) 0.50 V. Consider cells in which the zinc cell can be either the cathode or the anode.arrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which Hg22+(aq) is in contact with mercury metal and an electrode in which an aluminum strip dips into a solution of Al3+(aq)?arrow_forwardA half-cell that consists of a copper wire in a 1.00 M Cu(NO3)2 solution is connected by a salt bridge to a solution that is 1.00 M in both Pu3+ and Pu4+, and contains an inert metal electrode. The voltage of the cell is 0.642 V, with the copper as the negative electrode. (a) Write the half-reactions and the overall equation for the spontaneous chemical reaction. (b) Use the standard potential of the copper half-reaction, with the voltage of the cell, to calculate the standard reduction potential for the plutonium half-reaction.arrow_forward
- Consider the following cell reaction at 25C. 2Cr(s)+3Fe2+(aq)2Cr3+(aq)+3Fe(s) Calculate the standard cell potential of this cell from the standard electrode potentials, and from this obtain G for the cell reaction. Use data in Appendix C to calculate H; note that Cr(H2O)63+(aq) equals Cr3+(aq). Use these values of H and G to obtain S for the cell reaction.arrow_forwardAnother type of battery is the alkaline zinc-mercury cell, in which the cell reaction is Zn(s) + HgO(s) Hg() + ZnO(s) E = + 1.35 V (a) What is the standard free energy change for this reaction? (b) The standard free energy change in a voltaic cell is the maximum electrical energy that the cell can produce. If the reaction in a zinc-mercury cell consumes 1.00 g mercury oxide, what is the standard free energy change? (c) For how many hours could a mercury cell produce a 10-mA current if the limiting reactant is 3.50 g mercury oxide?arrow_forwardAt 298 K, the solubility product constant for solid Ba(IO3)2 is 1.5 109. Use the standard reduction potential of Ba2+(aq) to find the standard potential for the half-reaction Ba(IO3)2(s)+2eBa(s)+2IO3(aq)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY