Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 33PS
One half-cell in a voltaic cell is constructed from a silver wire electrode in a AgNO3 solution of unknown concentration. The other half-cell consists of a zinc electrode in a 1.0 M solution of Zn(NO3)2. A potential of 1.48 V is measured for this cell. Use this information to calculate the concentration of Ag+(aq).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
need help please and thanks dont understand a-b
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal energy
Divide the…
Please correct answer and don't used hand raiting
Please correct answer and don't used hand raiting
Chapter 19 Solutions
Chemistry & Chemical Reactivity
Ch. 19.1 - Prob. 2CYUCh. 19.1 - Prob. 3CYUCh. 19.1 - 1. Copper(II) sulfide reacts with nitric acid...Ch. 19.1 - Prob. 2RCCh. 19.1 - The balanced half-reaction for Br2 BrO3 in basic...Ch. 19.2 - Describe how to set up a voltaic cell using the...Ch. 19.2 - The following overall chemical reaction occurs in...Ch. 19.2 - Prob. 1RCCh. 19.2 - Prob. 2RCCh. 19.2 - Prob. 3RC
Ch. 19.3 - Prob. 1RCCh. 19.3 - Prob. 2RCCh. 19.4 - (a) Rank the following metals in their ability to...Ch. 19.4 - Prob. 1RCCh. 19.4 - Prob. 2RCCh. 19.4 - Prob. 3RCCh. 19.4 - Prob. 1QCh. 19.4 - Prob. 2QCh. 19.4 - Prob. 3QCh. 19.5 - A voltaic cell is set up with an aluminum...Ch. 19.5 - Check Your Understanding
The half-cells Fe2+(aq,...Ch. 19.5 - Prob. 1RCCh. 19.6 - Prob. 1CYUCh. 19.6 - Calculate the equilibrium constant at 25 C for the...Ch. 19.6 - Prob. 1RCCh. 19.7 - Predict the chemical reactions that will occur at...Ch. 19.7 - Prob. 1RCCh. 19.8 - Prob. 1CYUCh. 19.8 - 1. If you wish to convert 0.0100 mol of Au3+ (aq)...Ch. 19.8 - Prob. 1QCh. 19.8 - Use standard reduction potentials to determine...Ch. 19.8 - Prob. 3QCh. 19.8 - The overall reaction for the production of Cu(OH)2...Ch. 19.8 - Assume the following electrochemical cell...Ch. 19 - Write balanced equations for the following...Ch. 19 - Write balanced equations for the following...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Prob. 6PSCh. 19 - A voltaic cell is constructed using the reaction...Ch. 19 - A voltaic cell is constructed using the reaction...Ch. 19 - The half-cells Fe2+(aq) | Fe(s) and O2(g) | H2O...Ch. 19 - The half cells Sn2+(aq) |Sn(s) and Cl2(g) |Cl(aq)...Ch. 19 - For each of the following electrochemical cells,...Ch. 19 - For each of the following electrochemical cells,...Ch. 19 - Use cell notation to depict an electrochemical...Ch. 19 - Use cell notation to depict an electrochemical...Ch. 19 - What are the similarities and differences between...Ch. 19 - What reactions occur when a lead storage battery...Ch. 19 - Calculate the value of E for each of the following...Ch. 19 - Calculate the value of E for each of the following...Ch. 19 - Balance each of the following unbalanced...Ch. 19 - Balance each of the following unbalanced...Ch. 19 - Consider the following half-reactions: (a) Based...Ch. 19 - Prob. 22PSCh. 19 - Which of the following elements is the best...Ch. 19 - Prob. 24PSCh. 19 - Which of the following ions is most easily...Ch. 19 - From the following list, identify the ions that...Ch. 19 - (a) Which halogen is most easily reduced in acidic...Ch. 19 - Prob. 28PSCh. 19 - Calculate the potential delivered by a voltaic...Ch. 19 - Calculate the potential developed by a voltaic...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - Calculate rG and the equilibrium constant for the...Ch. 19 - Prob. 36PSCh. 19 - Use standard reduction potentials (Appendix M) for...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Prob. 41PSCh. 19 - Prob. 42PSCh. 19 - Which product, O2 or F2, is more likely to form at...Ch. 19 - Which product, Ca or H2, is more likely to form at...Ch. 19 - An aqueous solution of KBr is placed in a beaker...Ch. 19 - An aqueous solution of Na2S is placed in a beaker...Ch. 19 - In the electrolysis of a solution containing...Ch. 19 - In the electrolysis of a solution containing...Ch. 19 - Electrolysis of a solution of CuSO4(aq) to give...Ch. 19 - Electrolysis of a solution of Zn(NO3)2(aq) to give...Ch. 19 - A voltaic cell can be built using the reaction...Ch. 19 - Assume the specifications of a Ni-Cd voltaic cell...Ch. 19 - Prob. 53GQCh. 19 - Balance the following equations. (a) Zn(s) +...Ch. 19 - Magnesium metal is oxidized, and silver ions are...Ch. 19 - You want to set up a series of voltaic cells with...Ch. 19 - Prob. 57GQCh. 19 - Prob. 58GQCh. 19 - In the table of standard reduction potentials,...Ch. 19 - Prob. 60GQCh. 19 - Four voltaic cells are set up. In each, one...Ch. 19 - The following half-cells are available: (i)...Ch. 19 - Prob. 63GQCh. 19 - Prob. 64GQCh. 19 - A potential of 0.142 V is recorded (under standard...Ch. 19 - Prob. 66GQCh. 19 - The standard potential, E, for the reaction of...Ch. 19 - An electrolysis cell for aluminum production...Ch. 19 - Electrolysis of molten NaCl is done in cells...Ch. 19 - A current of 0.0100 A is passed through a solution...Ch. 19 - A current of 0.44 A is passed through a solution...Ch. 19 - Prob. 72GQCh. 19 - Prob. 73GQCh. 19 - Prob. 74GQCh. 19 - The products formed in the electrolysis of aqueous...Ch. 19 - Predict the products formed in the electrolysis of...Ch. 19 - Prob. 77GQCh. 19 - The metallurgy of aluminum involves electrolysis...Ch. 19 - Prob. 79GQCh. 19 - Prob. 80GQCh. 19 - Prob. 81GQCh. 19 - Prob. 82GQCh. 19 - Two Ag+(aq) | Ag(s) half-cells are constructed....Ch. 19 - Calculate equilibrium constants for the following...Ch. 19 - Prob. 85GQCh. 19 - Use the table of standard reduction potentials...Ch. 19 - Prob. 87GQCh. 19 - Prob. 88GQCh. 19 - Prob. 89GQCh. 19 - A voltaic cell is constructed in which one...Ch. 19 - An expensive but lighter alternative to the lead...Ch. 19 - The specifications for a lead storage battery...Ch. 19 - Manganese may play an important role in chemical...Ch. 19 - Prob. 94GQCh. 19 - Iron(II) ion undergoes a disproportionation...Ch. 19 - Copper(I) ion disproportionates to copper metal...Ch. 19 - Prob. 97GQCh. 19 - Prob. 98GQCh. 19 - Consider an electrochemical cell based on the...Ch. 19 - Prob. 100ILCh. 19 - A silver coulometer (Study Question 106) was used...Ch. 19 - Four metals, A, B, C, and D, exhibit the following...Ch. 19 - Prob. 103ILCh. 19 - The amount of oxygen, O2, dissolved in a water...Ch. 19 - Prob. 105SCQCh. 19 - The free energy change for a reaction, rG, is the...Ch. 19 - Prob. 107SCQCh. 19 - (a) Is it easier to reduce water in acid or base?...Ch. 19 - Prob. 109SCQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Can you tell me if my answers are correctarrow_forwardBunsenite (NiO) crystallizes like common salt (NaCl), with a lattice parameter a = 4.177 Å. A sample of this mineral that has Schottky defects that are not supposed to decrease the volume of the material has a density of 6.67 g/cm3. What percentage of NiO molecules is missing? (Data: atomic weight of Ni: 58.7; atomic weight of O: 16).arrow_forwardA sample of aluminum (face-centered cubic - FCC) has a density of 2.695 mg/m3 and a lattice parameter of 4.04958 Å. Calculate the fraction of vacancies in the structure. (Atomic weight of aluminum: 26.981).arrow_forward
- Which of the following species is a valid resonance structure of A? Use curved arrows to show how A is converted to any valid resonance structure. When a compound is not a valid resonance structurc of A, explain why not. Provide steps and tips on what to look for to understand how to solve and apply to other problems.arrow_forwardN IZ Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 HN Molecule 3 Х HN www. Molecule 4 Molecule 5 Molecule 6 none of the above NH NH Garrow_forwardShow work with explanation. don't give Ai generated solutionarrow_forward
- Follow the curved arrows to draw a second resonance structure for each species. Explain and steps for individual understanding.arrow_forwardDraw all reasonable resonance structures for the following cation. Then draw the resonance hybrid. Provide steps and explanationarrow_forwardHow are the molecules or ions in each pair related? Classify them as resonance structures, isomers, or neither.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY