College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 33P
Two lightbulbs are 1.0 m apart. From what distance can these lightbulbs be marginally resolved by a small telescope with a 4.0-cm-diameter objective lens? Assume that the lens is limited only by diffraction and λ = 600 nm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spy satellite orbits Earth at a height of 180 km. What is the minimum diameter of the objective lens in a telescope that must be used to resolve columns of troops marching 2.0 m apart? Assume λ = 550 nm.
An f/2.80 CCD camera has a 105 - mm focal length lens and can focus on objects from infinity to as near as 30.0 cm from the lens. (a) Determine the camera’s aperture diameter. Determine the (b) minimum and (c) maximum distances from the CCD sensor over which the lens must be able to travel during focusing. Note : “f/2.80” means “an f - number of 2.80.”
Can you please help me with this question? Thank you!
Chapter 19 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 19 - On a sunny summer day, with the sun overhead, you...Ch. 19 - Suppose you have two pinhole cameras. The first...Ch. 19 - A photographer focuses his camera on his subject....Ch. 19 - The object for a magnifier is usually placed very...Ch. 19 - A nature photographer taking a close-up shot of an...Ch. 19 - The CCD detector in a certain camera has a width...Ch. 19 - All humans have what is known as a blind spot,...Ch. 19 - Suppose you wanted special glasses designed to...Ch. 19 - You have lenses with the following focal lengths:...Ch. 19 - An 8-year-old child and a 75-year-old man both use...
Ch. 19 - A friend lends you the eyepiece of his microscope...Ch. 19 - An astronomer is using a telescope to observe two...Ch. 19 - A student makes a microscope using an objective...Ch. 19 - Is the wearer of the glasses in Figure Q19.14...Ch. 19 - Prob. 15CQCh. 19 - A collector notices a rare beetle on a tree 1.0 m...Ch. 19 - A microscope has a tube length of 20 cm. What...Ch. 19 - The distance between the objective and eyepiece of...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A 60-year-old man has a near point of 100 cm,...Ch. 19 - A person looking through a 10 D lens sees an image...Ch. 19 - Prob. 23MCQCh. 19 - An amateur astronomer looks at the moon through a...Ch. 19 - Prob. 1PCh. 19 - A student has built a 20-cm-long pinhole camera...Ch. 19 - A pinhole camera is made from an 80-cm-long box...Ch. 19 - A photographer uses his camera, whose lens has a...Ch. 19 - An older camera has a lens with a focal length of...Ch. 19 - In Figure P19.6 the camera lens has a 50 mm focal...Ch. 19 - a. Estimate the diameter of your eyeball. b. Bring...Ch. 19 - A farsighted person has a near point of 50 cm...Ch. 19 - A nearsighted woman has a far point of 300 cm....Ch. 19 - Martin has severe myopia, with a far point of only...Ch. 19 - Mary, like many older people, has lost all ability...Ch. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - Rank the following people from the most...Ch. 19 - The diameter of a penny is 19 mm. How far from...Ch. 19 - A magnifier has a magnification of 4 for someone...Ch. 19 - A magnifier has a magnification of 5. How far from...Ch. 19 - A farsighted man has a near point of 40 cm. What...Ch. 19 - An inexpensive microscope has a tube length of...Ch. 19 - A standard biological microscope is required to...Ch. 19 - A forensic scientist is using a standard...Ch. 19 - A microscope with an 8.0-mm-focal-length objective...Ch. 19 - The distance between the objective and eyepiece...Ch. 19 - For the combination of two identical lenses shown...Ch. 19 - For the combination of two lenses shown in Figure...Ch. 19 - A researcher is trying to shoot a tranquilizer...Ch. 19 - The objective lens of the refracting telescope at...Ch. 19 - You use your 8 binoculars to focus on a...Ch. 19 - Your telescope has a 700-mm-focal-length objective...Ch. 19 - A narrow beam of light with wavelengths from 450...Ch. 19 - Prob. 31PCh. 19 - A ray of red light, for which n = 1.54, and a ray...Ch. 19 - Two lightbulbs are 1.0 m apart. From what distance...Ch. 19 - A 1.0-cm-diameter microscope objective has a focal...Ch. 19 - A microscope with an objective of focal length 1.6...Ch. 19 - Suppose you point a pinhole camera at a 15-m-tall...Ch. 19 - Jason uses a lens with a focal length of 10.0 cm...Ch. 19 - A magnifier is labeled 5. What would its...Ch. 19 - A 20 microscope objective is designed for use in...Ch. 19 - Two converging lenses with focal lengths of 40 cm...Ch. 19 - A converging lens with a focal length of 40 cm and...Ch. 19 - A lens with a focal length of 25 cm is placed 40...Ch. 19 - A microscope with a 5 objective lens images a...Ch. 19 - Prob. 44GPCh. 19 - A 20 objective and 10 eyepiece give an angular...Ch. 19 - The objective lens and the eyepiece lens of a...Ch. 19 - Your telescope has an objective lens with a focal...Ch. 19 - Martha is viewing a distant mountain with a...Ch. 19 - Susan is quite nearsighted; without her glasses,...Ch. 19 - A spy satellite uses a telescope with a...Ch. 19 - Two stars have an angular separation of 3.3 105...Ch. 19 - Frank is nearsighted and his glasses require a...Ch. 19 - What is the angular resolution of the Hubble Space...Ch. 19 - The Hubble Space Telescope has a mirror diameter...Ch. 19 - Once dark adapted, the pupil of your eye is...Ch. 19 - The normal human eye has maximum visual acuity...Ch. 19 - Prob. 57GPCh. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
22. A rock is tossed straight up from ground level with a speed of 20 m/s. When it returns, it falls into a hol...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Explain why genetic Variation within a population is a prerequisite for evolution.
Campbell Biology (11th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Use the following graph to answer questions 3 and 4. 3. Which of the lines best depicts the log phase of a ther...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Masha is using a microscope to study Bascillus subtilis, which is a rod-shaped bacterium found in the gastrointestinal tract certain mammals. The objective lens she is using has a focal length fo = 0.45 cm and a diameter D = 1.00 cm. What is the shortest possible Bascillus subtilis bacterium she can resolve using this objective lens? Use A 550 nm and assume that diffraction sets the resolution limit in this case.arrow_forwardfo,1 1,900 mm. An astronomer is studying a particular nebula in interstellar space using a reflecting telescope. The telescope has an objective aperture diameter of D₁ = 290 mm and focal length of f The telescope captures the nebula's image on photographic film at its prime focus with an exposure time of At₁ = 1.75 min. If the astronomer wants to produce the same light energy per unit area on the film, what should be the exposure time (in minutes) to photograph the same nebula with a smaller telescope, which has an objective with diameter D₂ = 60.0 mm diameter and a focal length f0,2 900 mm? min =arrow_forwardEstimate the linear separation (in kilometers) of two objects at a distance of 1.4 x 106 km that can just be resolved by an observer on Earth (a) using the naked eye and (b) using a telescope with a 5.4-m diameter mirror. Use the following data: diameter of pupil = 5.0 mm; wavelength of light = 550 nm. (a) Number i Units (b) Number i Unitsarrow_forward
- We wish to use the 15-cm-diameter objective from an amateur telescope to form an image on a CCD of a distant star. Assuming a mean wavelength of 540 nm and a focal length of +140 cm, determine the size of the resulting Airy disk. How would that change if we doubled the lens diameter, keeping all else constant?arrow_forwardA reflecting telescope has a main mirror with fM = 620 mm. If an eyepiece with a magnification of 15 is used, what is the total magnification of the telescope? Assume the near-point distance of the eye is 25 cm.arrow_forwardA particular camera lens has a focal length of 200 mm. If it can take images of objects from 3 meters distant to infinity, what are the minimum and maximum necessary distances from the lens to the camera's sensor (or film, if it is a film camera)?arrow_forward
- An object is in front of a converging lens (f= 60 cm). The absolute value of the magnification of the lens is M = 3.0. The lens produces a real image. What are the object and image distances? Equations: 1 1 1 do di f Magnification, di = 3 do O d, = 70 cm and d; = 210 cm %3D O do = 100 cm and d; = 300 cm %3D O d, = 80 cm and d; = 240 cm %3D O d, = 90 cm and d; - 270 cm %3D O d, = 65 cm and d; = 195 cm %3D %3D +arrow_forwardYou observe, at normal incidence, light of wavelength 483 nm reflected off the (air) interface between a plano-convex lens (curved side down) touching a flat piece of glass. You see a dark central spot surrounded by rings of darkness. The smallest ring has radius 187 μm. If the lens is made of glass with refractive index 1.532, what is the focal length of the lens in cm?arrow_forwardWhat is the resolving power of a microscope (λ=550nm) with a 5-mm-diameter objective which has f= 9mm ?arrow_forward
- You observe, at normal incidence, light of wavelength 672 nm reflected off the (air) interface between a plano-convex lens (curved side down) touching a flat piece of glass. You see a dark central spot surrounded by rings of darkness. The smallest ring has radius 178 μm. If the lens is made of glass with refractive index 1.521, what is the focal length of the lens in cm? Correct Answer is: 9.05cm My answe is:7.17cmarrow_forwardA thick lens has the following properties: Radius of the front surface: R₁ = 5.0 cm Radius of the back surface: R₂ = -5.0 cm Thickness: d = 0.5 cm Index of refraction: n = 1.52 Consider the effective focal length of this lens (feff). What would the percentage error for the focal length be (relative to feff) if you were to assume that this were a thin lens? Select one: O 1.7 2.5 0 O O O O 3.6arrow_forward50 cm and an eye piece of focal length 5 cm. The least distance A telescope has an objective of focal length vision on a scale 2 m away from the objective. Calculate of distinct vision is 25 cm. The telescope is focused for distinct produced and (b) separation between (a) magnification objective and eye piece.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY