College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 22P
A microscope with an 8.0-mm-focal-length objective has a tube length of 16.0 cm. For the microscope to be in focus, how far should the objective lens be from the specimen?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a compound microscope, the objective has a focal length of 1.0 cm, the eyepiece has a focal length of 2.0 cm, and the tube length is 25 cm. What is the magnitude of the overall magnification of the microscope?
The objective lens in a microscope with a 15.0 cm long tube has a magnification of -50.0 and the eyepiece has a magnification of 21.0.
(a) What is the focal length of the objective?
cm
(b) What is the focal length of the eyepiece?
cm
(c) What is the overall magnification of the microscope?
In lab, the focal length of a particular lens is measured to be 31 cm. The actual focal length of this lens is 28 cm. What is the percent error of this measurement?
Chapter 19 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 19 - On a sunny summer day, with the sun overhead, you...Ch. 19 - Suppose you have two pinhole cameras. The first...Ch. 19 - A photographer focuses his camera on his subject....Ch. 19 - The object for a magnifier is usually placed very...Ch. 19 - A nature photographer taking a close-up shot of an...Ch. 19 - The CCD detector in a certain camera has a width...Ch. 19 - All humans have what is known as a blind spot,...Ch. 19 - Suppose you wanted special glasses designed to...Ch. 19 - You have lenses with the following focal lengths:...Ch. 19 - An 8-year-old child and a 75-year-old man both use...
Ch. 19 - A friend lends you the eyepiece of his microscope...Ch. 19 - An astronomer is using a telescope to observe two...Ch. 19 - A student makes a microscope using an objective...Ch. 19 - Is the wearer of the glasses in Figure Q19.14...Ch. 19 - Prob. 15CQCh. 19 - A collector notices a rare beetle on a tree 1.0 m...Ch. 19 - A microscope has a tube length of 20 cm. What...Ch. 19 - The distance between the objective and eyepiece of...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A 60-year-old man has a near point of 100 cm,...Ch. 19 - A person looking through a 10 D lens sees an image...Ch. 19 - Prob. 23MCQCh. 19 - An amateur astronomer looks at the moon through a...Ch. 19 - Prob. 1PCh. 19 - A student has built a 20-cm-long pinhole camera...Ch. 19 - A pinhole camera is made from an 80-cm-long box...Ch. 19 - A photographer uses his camera, whose lens has a...Ch. 19 - An older camera has a lens with a focal length of...Ch. 19 - In Figure P19.6 the camera lens has a 50 mm focal...Ch. 19 - a. Estimate the diameter of your eyeball. b. Bring...Ch. 19 - A farsighted person has a near point of 50 cm...Ch. 19 - A nearsighted woman has a far point of 300 cm....Ch. 19 - Martin has severe myopia, with a far point of only...Ch. 19 - Mary, like many older people, has lost all ability...Ch. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - Rank the following people from the most...Ch. 19 - The diameter of a penny is 19 mm. How far from...Ch. 19 - A magnifier has a magnification of 4 for someone...Ch. 19 - A magnifier has a magnification of 5. How far from...Ch. 19 - A farsighted man has a near point of 40 cm. What...Ch. 19 - An inexpensive microscope has a tube length of...Ch. 19 - A standard biological microscope is required to...Ch. 19 - A forensic scientist is using a standard...Ch. 19 - A microscope with an 8.0-mm-focal-length objective...Ch. 19 - The distance between the objective and eyepiece...Ch. 19 - For the combination of two identical lenses shown...Ch. 19 - For the combination of two lenses shown in Figure...Ch. 19 - A researcher is trying to shoot a tranquilizer...Ch. 19 - The objective lens of the refracting telescope at...Ch. 19 - You use your 8 binoculars to focus on a...Ch. 19 - Your telescope has a 700-mm-focal-length objective...Ch. 19 - A narrow beam of light with wavelengths from 450...Ch. 19 - Prob. 31PCh. 19 - A ray of red light, for which n = 1.54, and a ray...Ch. 19 - Two lightbulbs are 1.0 m apart. From what distance...Ch. 19 - A 1.0-cm-diameter microscope objective has a focal...Ch. 19 - A microscope with an objective of focal length 1.6...Ch. 19 - Suppose you point a pinhole camera at a 15-m-tall...Ch. 19 - Jason uses a lens with a focal length of 10.0 cm...Ch. 19 - A magnifier is labeled 5. What would its...Ch. 19 - A 20 microscope objective is designed for use in...Ch. 19 - Two converging lenses with focal lengths of 40 cm...Ch. 19 - A converging lens with a focal length of 40 cm and...Ch. 19 - A lens with a focal length of 25 cm is placed 40...Ch. 19 - A microscope with a 5 objective lens images a...Ch. 19 - Prob. 44GPCh. 19 - A 20 objective and 10 eyepiece give an angular...Ch. 19 - The objective lens and the eyepiece lens of a...Ch. 19 - Your telescope has an objective lens with a focal...Ch. 19 - Martha is viewing a distant mountain with a...Ch. 19 - Susan is quite nearsighted; without her glasses,...Ch. 19 - A spy satellite uses a telescope with a...Ch. 19 - Two stars have an angular separation of 3.3 105...Ch. 19 - Frank is nearsighted and his glasses require a...Ch. 19 - What is the angular resolution of the Hubble Space...Ch. 19 - The Hubble Space Telescope has a mirror diameter...Ch. 19 - Once dark adapted, the pupil of your eye is...Ch. 19 - The normal human eye has maximum visual acuity...Ch. 19 - Prob. 57GPCh. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Starting with 10 bacterial cells per milliliter in a sufficient amount of complete culture medium with a 1-hour...
Microbiology with Diseases by Body System (5th Edition)
Write an equation that uses the products of photosynthesis as reactants and the reactants of photosynthesis as ...
Campbell Biology in Focus (2nd Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
5. The diploid number of the hypothetical animal Geneticus introductus is 2n = 36. Each diploid nucleus contain...
Genetic Analysis: An Integrated Approach (3rd Edition)
DRAW IT Pea plants heterozygous for flower position and stem length (AaTt) are allowed to self-pollinate, and ...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forwardYou view an object by holding a 2.5 cm-focal length magnifying glass 10 cm away from it. How far from your eye should you hold the magnifying glass to obtain a magnification of 10 ?arrow_forwardWhat is the magnification of a magnifying lens with a focal length of 10 cm if it is held 3.0 cm from the eye and the object is 12 cm from the eye?arrow_forward
- In Figure P35.30, a thin converging lens of focal length 14.0 cm forms an image of the square abed, which is he = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c. and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb, represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P35.30arrow_forwardA lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forwardA microscope has an objective lens with a focal length of 16.22 mm and an eyepiece with a focal length of 9.64 mm. With the length of the barrel set at 26.0 cm, the diameter of a red blood cell's image subtends an angle of 1.43 mrad with the eye. If the final image distance is 26.0 cm from the eyepiece, what is the actual diameter of the red blood cell? Hint:To solve this equation, go back to basics and use the thin-lens equation. (answer in ?m)arrow_forward
- A microscope has an objective lens with a focal length of 16.22 mm and an eyepiece with a focal length of 9.06 mm. With the length of the barrel set at 33.0 cm, the diameter of a red blood cell's image subtends an angle of 1.43 mrad with the eye. If the final image distance is 33.0 cm from the eyepiece, what is the actual diameter of the red blood cell? Hint: To solve this equation, go back to basics and use the thin-lens equation. ?marrow_forwardA microscope has an objective lens with a focal length of 16.22 mm and an eyepiece with a focal length of 9.02 mm. With the length of the barrel set at 35.0 cm, the diameter of a red blood cell's image subtends an angle of 1.43 mrad with the eye. If the final image distance is 35.0 cm from the eyepiece, what is the actual diameter of the red blood cell? Hint: To solve this equation, go back to basics and use the thin-lens equation. 62.7 Your response is off by a multiple of ten. jumarrow_forwardA microscope has an objective lens with a focal length of 16.22 mm and an eyepiece with a focal length of 9.28 mm. With the length of the barrel set at 35.0 cm, the diameter of a red blood cell's image subtends an angle of 1.43 mrad with the eye. If the final image distance is 35.0 cm from the eyepiece, what is the actual diameter of the red blood cell? Hint: To solve this equation, go back to basics and use the thin-lens equation. umarrow_forward
- A microscope has an objective lens with a focal length of 16.22 mm and an eyepiece with a focal length of 9.52 mm. With the length of the barrel set at 34.0 cm, the diameter of a red blood cell's image subtends an angle of 1.43 mrad with the eye. If the final image distance is 34.0 cm from the eyepiece, what is the actual diameter of the red blood cell? Hint: To solve this equation, go back to basics and use the thin-lens equation. um Need Help? Read Itarrow_forwardA microscope has an objective lens with a focal length of 16.22 mm and an eyepiece with a focal length of 9.86 mm. With the length of the barrel set at 34.0 cm, the diameter of a red blood cell's image subtends an angle of 1.43 mrad with the eye. If the final image distance is 34.0 cm from the eyepiece, what is the actual diameter of the red blood cell? Hint: To solve this equation, go back to basics and use the thin - lens equation.arrow_forwardThe angular magnification of a microscope is 440x when the final image is at infinity. The optical tube length is 10 cm and the focal length of the objective is 7 mm. What is the focal length of the eyepiece? cmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY