
Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 1RQ
What are the forms of raw materials for processing plastics into products?
Expert Solution & Answer

To determine
What are the forms of raw materials for processing plastics into products?
Explanation of Solution
Plastics generally are shipped to production plants as granules,pellets, or powders are melted for thermoplastics only before the shaping procedure. Liquid plastics used for curing into solid form also are utilized, especially to create reinforced-plastic parts as well as thermosets.
As people are getting more aware about the environment, raw materials may consist of reground, melted or chopped plastics, gotten from recycling centers. As one may assume, the quality of the product might not be as great as when created from the materials.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Qu 5 Determine the carburizing time necessary to achieve a carbon concentration of 0.30 wt% at a position 4 mm into an iron carbon alloy that initially contains 0.10 wt% C. The surface concentration is to be maintained at 0.90 wt% C, and the treatment is to be conducted at 1100°C. Use the data for the diffusion of
carbon into y-iron: Do = 2.3 x10-5 m2/s and Qd = 148,000 J/mol. Express your answer in hours to three significant figures.
show all work step by step problems formula material science
(Read Question)
In figure A, the homogeneous rod of constant cross section is attached to unyielding supports. In figure B, a homogeneous bar with a cross-sectional area of 600 mm2 is attached to rigid supports. The bar carries the axial loads P1 = 20 kN and P2 = 60 kN, as shown.1. In figure A, derive the expression that calculates the reaction R1 in terms of P, and the given dimensions.2. In figure B, calculate the reaction (kN) at A.3. In figure B, calculate the maximum axial stress (MPa) in the rod.
Chapter 19 Solutions
Manufacturing Engineering & Technology
Ch. 19 - What are the forms of raw materials for processing...Ch. 19 - What is extrusion? What products are produced by...Ch. 19 - Describe the features of an extruder screw and...Ch. 19 - How are injection-molding machines rated?Ch. 19 - What is (a) a parison, (b) a plastisol, and (c) a...Ch. 19 - How is thin plastic film produced?Ch. 19 - List several common products that can be made by...Ch. 19 - What similarities and differences are there...Ch. 19 - Explain the difference between potting and...Ch. 19 - What is thermoforming?
Ch. 19 - Describe runner, gate, sprue, and well.Ch. 19 - Describe the advantages of cold-forming plastics...Ch. 19 - What are the characteristics of filament-wound...Ch. 19 - Describe the methods that can be used to make...Ch. 19 - What is pultrusion? Pulforming?Ch. 19 - How are very thin plastic film produced?Ch. 19 - What process is used to make foam drinking cups?Ch. 19 - If a polymer is in the form of a thin sheet, is it...Ch. 19 - How are polymer fibers made? Why are they much...Ch. 19 - What are the advantages of coextrusion?Ch. 19 - Explain how latex rubber gloves are made.Ch. 19 - Describe the features of a screw extruder...Ch. 19 - Explain why injection molding is capable of...Ch. 19 - Prob. 24QLPCh. 19 - Explain the reasons that some plastic-forming...Ch. 19 - Describe the problems involved in recycling...Ch. 19 - Can thermosetting plastics be used in injection...Ch. 19 - Inspect some plastic containers, such as those...Ch. 19 - An injection-molded nylon gear is found to contain...Ch. 19 - Explain why operations such as blow molding and...Ch. 19 - Prob. 31QLPCh. 19 - Typical production rates are given in Table 19.2....Ch. 19 - What determines the cycle time for (a) injection...Ch. 19 - Does the pull-in defect (sink marks) shown in Fig....Ch. 19 - What determines the intervals at which the...Ch. 19 - Identify processes that would be suitable for...Ch. 19 - Identify processes that are capable of producing...Ch. 19 - Inspect several electrical components, such as...Ch. 19 - Inspect several similar products that are made of...Ch. 19 - What are the advantages of using whiskers a...Ch. 19 - Construct a table that lists the main...Ch. 19 - Estimate the die-clamping force required for...Ch. 19 - A 2-Iitcr plastic beverage bottle is made by blow...Ch. 19 - Consider a Styrofoam drinking cup. Measure the...Ch. 19 - In Fig. 19.2, what flight angle, , should be used...Ch. 19 - Make a survey of a variety of sports equipment,...Ch. 19 - Explain the design considerations involved in...Ch. 19 - Give examples of several parts suitable for insert...Ch. 19 - Give other examples of design modifications in...Ch. 19 - With specific examples, discuss the design issues...Ch. 19 - Die swell in extrusion is radially uniform for...Ch. 19 - Inspect various plastic components in a typical...Ch. 19 - It is well known that plastic forks, spoons, and...Ch. 19 - Prob. 55SDPCh. 19 - Make a survey of the technical literature, and...Ch. 19 - Prob. 57SDPCh. 19 - Prob. 58SDPCh. 19 - Prob. 59SDPCh. 19 - Examine some common and colorful plastic poker...Ch. 19 - Obtain different styles of toothpaste tubes,...Ch. 19 - By incorporating small amounts of blowing agent,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (Read image)arrow_forward(Read Image)arrow_forwardM16x2 grade 8.8 bolts No. 25 C1- Q.2. The figure is a cross section of a grade 25 cast-iron pressure vessel. A total of N, M16x2.0 grade 8.8 bolts are to be used to resist a separating force of 160 kN. (a) Determine ks, km, and C. (b) Find the number of bolts required for a load factor of 2 where the bolts may be reused when the joint 19 mm is taken apart. (c) with the number of bolts obtained in (b), determine the realized load factor for overload, the yielding factor of safety, and the separation factor of safety. 19 mmarrow_forward
- Problem4. The thin uniform disk of mass m = 1-kg and radius R = 0.1m spins about the bent shaft OG with the angular speed w2 = 20 rad/s. At the same time, the shaft rotates about the z-axis with the angular speed 001 = 10 rad/s. The angle between the bent portion of the shaft and the z-axis is ẞ = 35°. The mass of the shaft is negligible compared to the mass of the disk. a. Find the angular momentum of the disk with respect to point G, based on the axis orientation as shown. Include an MVD in your solution. b. Find the angular momentum of the disk with respect to point O, based on the axis orientation as shown. (Note: O is NOT the center of fixed-point rotation.) c. Find the kinetic energy of the assembly. z R R 002 2R x Answer: H = -0.046ĵ-0.040 kg-m²/sec Ho=-0.146-0.015 kg-m²/sec T 0.518 N-m =arrow_forwardProblem 3. The assembly shown consists of a solid sphere of mass m and the uniform slender rod of the same mass, both of which are welded to the shaft. The assembly is rotating with angular velocity w at a particular moment. Find the angular momentum with respect to point O, in terms of the axes shown. Answer: Ñ。 = ½mc²wcosßsinßĵ + (}{mr²w + 2mb²w + ½ mc²wcos²ß) k 3 m r b 2 C لا marrow_forwardOnly question 2arrow_forward
- Only question 1arrow_forwardOnly question 3arrow_forwardI have Euler parameters that describe the orientation of N relative to Q, e = -0.7071*n3, e4 = 0.7071. I have Euler parameters that describe the orientation of U relative to N, e = -1/sqrt(3)*n1, e4 = sqrt(2/3). After using euler parameter rule of successive rotations, I get euler parameters that describe the orientation of U relative to Q, e = -0.4082*n1 - 0.4082*n2 - 0.5774*n3. I need euler parameters that describe the orientation of U relative to Q in vector basis of q instead of n. How do I get that?arrow_forward
- Describe at least 4 processes in engineering where control charts are (or should be) appliedarrow_forwardDescribe at least two (2) processes where control charts are (or should be) applied.arrow_forwardProblem 3: A cube-shaped spacecraft is in a circular Earth orbit. Let N (n,) be inertial and the spacecraft is denoted S (ŝ₁). The spacecraft is described such that ¯½º = J ŝ₁ŝ₁ + J ŝ₂§₂ + J §¸Ŝ3 Location of the spacecraft in the orbit is determined by the orbit-fixed unit vectors ê, that are oriented by the angle (Qt), where is a constant angular rate. 52 €3 3> 2t 55 Λ Из At the instant when Qt = 90°, the spacecraft S is oriented relative to the orbit such that 8₁ = 0° Space-three 1-2-3 angles 0₂ = 60° and ES = $₂ rad/s 0₁ = 135° (a) At this instant, determine the direction cosine matrix that describes the orientation of the spacecraft with respect to the inertial frame N.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Polymer Basics; Author: Tonya Coffey;https://www.youtube.com/watch?v=c5gFHpWvDXk;License: Standard youtube license