The fact that the electron has a negative charge and the proton has a positive charge is due to a convention established by Benjamin Franklin. Would there have been any significant consequences if Franklin had chosen the opposite convention? Is there any advantage to naming charges plus and minus as opposed to, say, A and B?
Answer to Problem 1CQ
Explanation of Solution
The sign convention of the charge of electron and proton is minus and plus respectively and when the charges of the electron is interchanged with each other, there is no such effect on the basic science because the total charge of the system is still zero.
The use of plus and is minus signs do have a big advantage because it shows that the system has a zero charge which means that there is an equal amount of the positive and negative charge and when the labels are opposed to
Conclusion:
Therefore, there are no such significant consequences if Franklin had chosen the opposite convention or not.
Want to see more full solutions like this?
Chapter 19 Solutions
Physics (5th Edition)
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Campbell Biology (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Concepts of Genetics (12th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- A sphere has a net charge of 8.05 nC, and a negatively charged rod has a charge of 6.03 nC. The sphere and rod undergo a process such that 5.00 109 electrons are transferred from the rod to the sphere. What are the charges of the sphere and the rod after this process?arrow_forwardTwo metal spheres of identical mass m = 4.00 g are suspended by light strings 0.500 m in length. The left-hand sphere carries a charge of 0.800 C, and the right-hand sphere carries a charge of 1.50 C. What is the equilibrium separation between the centers of the two spheres?arrow_forwardThe fundamental charge is e = 1.60 1019 C. Identify whether each of the following statements is true or false. (a) Its possible to transfer electric charge to an object so that its net electric charge is 7.5 times the fundamental electric charge, e. (b) All protons have a charge of +e. (c) Electrons in a conductor have a charge of e while electrons in an insulator have no charge.arrow_forward
- Two horizontal metal plates, each 10.0 cm square, are aligned 1.00 cm apart with one above the other. They are given equal-magnitude charges of opposite sign so that a uniform downward electric field of 2.00 103 N/C exists in the region between them. A particle of mass 2.00 1016 kg and with a positive charge of 1.00 106 C leaves the center of the bottom negative plate with an initial speed of 1.00 x 105 m/s at an angle of 37.0 above the horizontal. (a) Describe the trajectory of the particle, (b) Which plate does it strike? (c) Where does it strike, relative to its starting point?arrow_forwardAn electroscope is a device used to measure the (relative) charge on an object (Fig. P23.20). The electroscope consists of two metal rods held in an insulated stand. The bent rod is fixed, and the straight rod is attached to the bent rod by a pivot. The straight rod is free to rotate. When a positively charged object is brought close to the electroscope, the straight movable rod rotates. Explain your answers to these questions: a. Why does the rod rotate in Figure P23.20? b. If the positively charged object is removed, what happens to the electroscope? c. If a negatively charged object replaces the positively charged object in Figure P23.20, what happens to the electroscope? d. If a charged object touches the top of the fixed conducting rod and is then removed, what happens to the electroscope?arrow_forwardReview. A particle with a charge of 60.0 nC is placed at the center of a nonconducting spherical shell of inner radius 20.0 cm and outer radius 25.0 cm. The spherical shell carries charge with a uniform density of 1.33 C/m3. A proton moves in a circular orbit just outside the spherical shell. Calculate the speed of the proton.arrow_forward
- (i) A metallic sphere A of radius 1.00 cm is several centimeters away from a metallic spherical shell B of radius 2.00 cm. Charge 450 nC is placed on A, with no charge on B or anywhere nearby. Next, the two objects are joined by a long, thin, metallic wire (as shown in Fig. 25.19), and finally the wire is removed. How is the charge shared between A and B? (a) 0 on A. 450 nC on B (b) 90.0 nC on A and 360 nC on B, with equal surface charge densities (c) 150 nC on A and 300 nC on B (d) 225 nC on A and 225 nC on B (e) 450 nC on A and 0 on B (ii) A metallic sphere A of radius 1 cm with charge 450 nC hangs on an insulating thread inside an uncharged thin metallic spherical shell B of radius 2 cm. Next, A is made temporarily to touch the inner surface of B. How is the charge then shared between them? Choose from the same possibilities. Arnold Arons, the only physics teacher yet to have his picture on the cover ol Time magazine, suggested the idea for this question.arrow_forwardLightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P25.52. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?arrow_forwardTwo point charges attract each other with an electric force of magnitude F. If the charge on one of the particles is reduced to one-third its original value and the distance between the particles is doubled, what is the resulting magnitude of the electric force between them? (a) 112F (b) 13F (c) 16F (d) 34F (e) 32Farrow_forward
- Three equal positive charges q are at the comers of an equilateral triangle of side a as shown in Figure P19.28. Assume the three charges together create an electric field. (a) Sketch the field lines in the plane of the charges. (b) Find the location of one point (other than ) where the electric field is zero. What are (c) the magnitude and (d) the direction of the electric field at P due to the two charges at the base?arrow_forwardA particle with charge 3.00 nC is at the origin, and a particle with negative charge of magnitude Q is at x = 50.0 cm. A third particle with a positive charge is in equilibrium at x = 20.9 cm. What is Q?arrow_forwardA point charge of 4.00 nC is located at (0, 1.00) m. What is the x component of the electric field due to the point charge at (4.00, 2.00) m? (a) 1.15 N/C (b) 0.864 N/C (c) 1.44 N/C (d) 1.15 N/C (e) 0.864 N/Carrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning