Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 102PP
Predict/Calculate Referring to Example 19-16 The magnitude of the charge is changed until the angle the thread makes with the vertical is θ = 15.0°. The electric field is 1.46 × 104 N/C and the mass of the object is 0.0250 kg. (a) Is the new magnitude of q greater than or less than its previous value? Explain. (b) Find the new value of q.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 19 Solutions
Physics (5th Edition)
Ch. 19.1 - Enhance Your Understanding (Answers given at the...Ch. 19.2 - Enhance Your Understanding (Answers given at the...Ch. 19.3 - Positive and negative charges of equal magnitude...Ch. 19.4 - Enhance Your Understanding (Answers given at the...Ch. 19.5 - The electric field lines for a system of two...Ch. 19.6 - Two conducting spheres of different radii are...Ch. 19.7 - Four Gaussian surfaces (A, B, C, D) are shown in...Ch. 19 - The fact that the electron has a negative charge...Ch. 19 - Explain why a comb that has been rubbed through...Ch. 19 - Small bits of paper are attracted to an...
Ch. 19 - A charged rod is brought near a suspended object,...Ch. 19 - A charged rod is brought near a suspended object,...Ch. 19 - A point charge +Q is fixed at a height H above the...Ch. 19 - A proton moves in a region of constant electric...Ch. 19 - Describe some of the differences between charging...Ch. 19 - A system consists of two charges of equal...Ch. 19 - The force experienced by charge 1 at point A is...Ch. 19 - Can an electric field exist in a vacuum? Explain.Ch. 19 - Gausss law can tell us how much charge is...Ch. 19 - Predict/Explain An electrically neutral object is...Ch. 19 - (a) Based on the materials listed in Table 19-1,...Ch. 19 - This problem refers to the information given in...Ch. 19 - Find the net charge of a system consisting of (a)...Ch. 19 - Find the total electric charge of 2.5 kg of (a)...Ch. 19 - A container holds a gas consisting of 2.85 moles...Ch. 19 - The Charge on Adhesive Tape When adhesive tape is...Ch. 19 - Four pairs of conducting spheres, all with the...Ch. 19 - A system of 1525 particles, each of which is...Ch. 19 - A charge +q and a charge q are placed at opposite...Ch. 19 - Consider the three electric charges, A, B, and C,...Ch. 19 - Predict/Explain Suppose the charged sphere in...Ch. 19 - At what separation is the electrostatic force...Ch. 19 - How much equal charge should be placed on the...Ch. 19 - Predict/Calculate Two point charges, the first...Ch. 19 - When two identical ions are separated by a...Ch. 19 - Given that q = +18 C and d = 21 cm, find the...Ch. 19 - Five point charges, q1 = +q, q2 = +2q q3 = 3q, q4...Ch. 19 - Three charges, q1 = +q, q2 = q, and q3 = +q, are...Ch. 19 - The attractive electrostatic force between the...Ch. 19 - Prob. 21PCECh. 19 - A sphere of radius 4.22 cm and uniform surface...Ch. 19 - Predict/Calculate Given that q = +12 C and d = 19...Ch. 19 - Suppose the charge q2 in Figure 19-38 can be moved...Ch. 19 - A point charge q = 0.55 nC is fixed at the origin....Ch. 19 - A point charge q = 0.55 nC is fixed at the origin....Ch. 19 - Find the direction and magnitude of the net...Ch. 19 - Predict/Calculate (a) Find the direction and...Ch. 19 - Predict/Calculate Two point charges lie on the x...Ch. 19 - A system consists of two positive point charges,...Ch. 19 - Predict/Calculate The point charges in Figure...Ch. 19 - Referring to the previous problem, suppose that...Ch. 19 - Predict/Calculate (a) If the nucleus in Example...Ch. 19 - Four point charges are located at the corners of a...Ch. 19 - Predict/Calculate Two identical point charges in...Ch. 19 - Two spheres with uniform surface charge density,...Ch. 19 - Point charges, q1 and q2 are placed on the x axis,...Ch. 19 - Two electric charges are separated by a finite...Ch. 19 - What is the magnitude of the electric field...Ch. 19 - A +5.0-C charge experiences a 0.64-N force in the...Ch. 19 - Two point charges lie on the x axis. A charge of...Ch. 19 - Two point charges lie on the x axis. A charge of...Ch. 19 - The electric field on the dashed line in Figure...Ch. 19 - An object with a charge of 2.1 C and a mass of...Ch. 19 - Predict/Calculate Figure 19-42 shows a system...Ch. 19 - Two point charges of equal magnitude are 8.3 cm...Ch. 19 - Predict/Calculate A point charge q = +4.7 C is...Ch. 19 - Predict/Calculate Four point charges, each of...Ch. 19 - The electric field at the point x = 5.00 cm and y...Ch. 19 - Predict/Calculate The electric field lines...Ch. 19 - Referring to Figure 19-43, suppose q2 is not...Ch. 19 - The electric field lines surrounding three charges...Ch. 19 - Make a qualitative sketch of the electric field...Ch. 19 - Sketch the electric field lines for the system of...Ch. 19 - Sketch the electric field lines for the system of...Ch. 19 - Suppose the magnitude of the electric field...Ch. 19 - Predict/Explain Gaussian surface 1 has twice the...Ch. 19 - Suppose the conducting shell in Figure 19-33which...Ch. 19 - Rank the Gaussian surfaces shown in Figure 19-45...Ch. 19 - A uniform electric field of magnitude 35,000 N/C...Ch. 19 - Prob. 61PCECh. 19 - A surface encloses the charges q1 = 3.2 C, q2 =...Ch. 19 - BIO Nerve Cells Nerve cells are long, thin...Ch. 19 - The electric flux through each of the six sides of...Ch. 19 - Consider a spherical Gaussian surface and three...Ch. 19 - The surface charge per area on the outside of a...Ch. 19 - Photovoltaic Field Suppose the field in the...Ch. 19 - A thin wire of infinite extent has a charge per...Ch. 19 - CE Predict/Explain An electron and a proton are...Ch. 19 - CE Predict/Explain In Conceptual Example 19-9,...Ch. 19 - CE Under normal conditions, the electric field at...Ch. 19 - A proton is released from rest in a uniform...Ch. 19 - BIO Ventricular Fibrillation If a charge of 0.30 C...Ch. 19 - A point charge at the origin of a coordinate...Ch. 19 - Prob. 76GPCh. 19 - The Balloon and Your Hair Suppose 7.5 1010...Ch. 19 - The Balloon and the Wall When a charged balloon...Ch. 19 - CE Four lightweight, plastic spheres, labeled A,...Ch. 19 - Find (a) the direction and (b) the magnitude of...Ch. 19 - A small object of mass 0.0150 kg and charge 3.1 C...Ch. 19 - The electric field at a radial distance of 47.7 cm...Ch. 19 - Predict/Calculate Three charges are placed at the...Ch. 19 - Predict/Calculate BIO Cell Membranes The cell...Ch. 19 - A square with sides of length L has a point charge...Ch. 19 - Two small plastic balls hang from threads of...Ch. 19 - A small sphere with a charge of +2.44 C is...Ch. 19 - Twelve identical point charges q are equally...Ch. 19 - BIO Nerve Impulses When a nerve impulse propagates...Ch. 19 - Predict/Calculate The Electric Field of the Earth...Ch. 19 - An object of mass m = 2.5 g and charge Q = +42C is...Ch. 19 - Four identical charges, +Q occupy the corners of a...Ch. 19 - Two charges, +q and q, occupy two corners of an...Ch. 19 - Figure 19-52 shows an electron entering a...Ch. 19 - Two identical conducting spheres are separated by...Ch. 19 - Have you ever pulled clothes from a dryer only to...Ch. 19 - Have you ever pulled clothes from a dryer only to...Ch. 19 - The force required to detach a grain of pollen...Ch. 19 - Pollen of the lisianthus plant requires a force 10...Ch. 19 - Predict/Calculate Referring to Example 19-14...Ch. 19 - Predict/Calculate Referring to Example 19-14 In...Ch. 19 - Predict/Calculate Referring to Example 19-16 The...Ch. 19 - Referring to Example 19-16 Suppose the magnitude...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
Draw the enol tautomers for each of the following compounds. For compounds that have more than one enol tautome...
Organic Chemistry (8th Edition)
How do food chains and food webs differ? Which is the more accurate representation of feeding relationships in ...
Biology: Life on Earth (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. Two stars that are in the same constel...
Cosmic Perspective Fundamentals
7. Both Tim and Jan (problem 6) have a widow’s peak (see Module 9.8), but Mike has a straight hairline. What ar...
Campbell Biology: Concepts & Connections (9th Edition)
Based on your answers to Questions 2 and 3, which part of the Atlantic basin appears to have opened first?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Using the symmetry of the arrangement, determine the direction of the electric field at the center of the square in Figure 18.53, given that qa= 1.00C and qc=qd= +1.00 C. (b) Calculate the magnitude of the electric field at the location of q, given that the square is 5.00 cm on a side.arrow_forward(a) Using the symmetry of the arrangement, show that the electric field at the center of the square in figure 18.46 is zero if the charges on the four comers are exactly equal. (b) Show that this is also true for any combination of charges in which qa= qd and qa = qcarrow_forward(a) Find the magnitude and direction of the electric field at the position of the 2.00 C charge in Figure P13.13. (b) How would the electric field at that point be affected if the charge there were doubled? Would the magnitude of the electric force be affected?arrow_forward
- Consider n equal positively charged particles each of magnitude Q/n placed symmetrically around a circle of radius a. (a) Calculate the magnitude of the electric field at a point a distance x from the center of the circle and on the line passing through the center and perpendicular to the plane of the circle. (b) Explain why this result is identical to the result of the calculation done in Example 23.8.arrow_forwardA small sphere of charge q = +68 C and mass m = 5.8 g is attached to a light string and placed in a uniform electric field E. that makes ail angle = 37 with the horizontal. The opposite end of the string is attached to a wall and the sphere is in static equilibrium when the string is horizontal as in Figure P15.22. (a) Construct a free body diagram for the sphere. Find (b) the magnitude of the electric field and (c) the tension in the string.arrow_forwardA thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forward
- The electric field at a point on the perpendicular bisector of a charged rod was calculated as the first example of a continuous charge distribution, resulting in Equation 24.15:E=kQy12+y2j a. Find an expression for the electric field when the rod is infinitely long. b. An infinitely long rod with uniform linear charge density also contains an infinite amount of charge. Explain why this still produces an electric field near the rod that is finite.arrow_forward(a) Find the electric field at x = 5.00 cm in Figure 18.52 (a), given that q = 1.00 C. (b) at what position between 3.00 and 8.00 cm is the total electric field the same as that for ? 2q alone? (c) Can the electric field be zero anywhere between 0.00 and 8.00 cm? (d) At very large positive or negative values of x, the electric field approaches zero in both (a) and (b). In which does it most rapidly approach zero and why? (e) At what position to the light of 11.0 cm is the total electric field zero, other than at infinity? (Hint: A graphing calculator can yield considerable insight in this problem.)arrow_forwardTwo horizontal metal plates, each 10.0 cm square, are aligned 1.00 cm apart with one above the other. They are given equal-magnitude charges of opposite sign so that a uniform downward electric field of 2.00 103 N/C exists in the region between them. A particle of mass 2.00 1016 kg and with a positive charge of 1.00 106 C leaves the center of the bottom negative plate with an initial speed of 1.00 x 105 m/s at an angle of 37.0 above the horizontal. (a) Describe the trajectory of the particle, (b) Which plate does it strike? (c) Where does it strike, relative to its starting point?arrow_forward
- The dome of a Van de Graaff generator receives a charge of 2.0 104 C. Find the strength of the electric field (a) inside the dome, (b) at the surface of the dome, assuming it has a radius of 1.0 m, and (c) 4.0 in front the center of the dome. Hint: See Section 15.5 to review properties of conductors in electrostatic equilibrium. Also, note that the points on the surface are outside a spherically symmetric charge distribution; the total charge may be considered to be located at the center of the sphere.arrow_forwardA uniformly charged insulating rod of length 14.0 cm is bent into the shape of a semicircle as shown in Figure P 19.21. The rod has a total charge of 7.50 C. Find (a) the magnitude and (b) the direction of the electric field at O, the center of the semicircle.arrow_forwardA charged rod is placed in the center along the axis of a neutral metal cylinder (Fig. F25.57). The rod has a total charge of 38.3 C uniformly distributed. What are the charges on the inner and outer surfaces of the metal cylinder? (Ignore the ends.) FIGURE P25.57 Problems 57 and 58.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY