Have you ever pulled clothes from a dryer only to have them “cling” together? Have you ever walked across a carpet and had a ’shocking” experience when you touched a doorknob? If so, you already know a lot about state electricity. Ben Franklin showed that the same kind of spark we experience on a carpet, when scaled up in size, is responsible for bolts of lightning. His insight led to the invention of lightning rods to conduct electricity safely away from a building into the ground. Today we employ static electricity in many technological applications, ranging from photocopiers to electrostatic precipitators that clean emissions from smokestacks. We even use electrostatic salting machines to give potato chips the salty taste we enjoy! Living organisms also use static electricity—in fact, static electricity plays an important role in the pollination process. Imagine a bee busily flitting from flower to flower. As air rushes over its body and wings it acquires an electric charge—just as you do when your feet rub against a carpet. A bee might have only 93.0 pC of charge, but that’s more than enough to attract grains of pollen from a distance, like a charged comb attracting bits of paper. The result is a bee covered with grains of pollen, as illustrated in the accompanying photo, unwittingly transporting pollen from one flower to another. So, the next time you experience annoying static cling in your clothes, just remember that the same force helps pollinate the plants that we all need for life on Earth. 97. • Suppose two bees, each with a charge of 93.0 pC, are separated by a distance of 1.20 cm. Treating the bees as point charges, what is the magnitude of the electrostatic force experienced by the bees? (In comparison, the weight of a 0.140-g bee is 1.37 × 10 −3 N.) A. 6.01 × 10 −17 N B. 6.48 × 10 −9 N C. 5.40 × 10 −7 N D. 5.81 × 10 −3 N
Have you ever pulled clothes from a dryer only to have them “cling” together? Have you ever walked across a carpet and had a ’shocking” experience when you touched a doorknob? If so, you already know a lot about state electricity. Ben Franklin showed that the same kind of spark we experience on a carpet, when scaled up in size, is responsible for bolts of lightning. His insight led to the invention of lightning rods to conduct electricity safely away from a building into the ground. Today we employ static electricity in many technological applications, ranging from photocopiers to electrostatic precipitators that clean emissions from smokestacks. We even use electrostatic salting machines to give potato chips the salty taste we enjoy! Living organisms also use static electricity—in fact, static electricity plays an important role in the pollination process. Imagine a bee busily flitting from flower to flower. As air rushes over its body and wings it acquires an electric charge—just as you do when your feet rub against a carpet. A bee might have only 93.0 pC of charge, but that’s more than enough to attract grains of pollen from a distance, like a charged comb attracting bits of paper. The result is a bee covered with grains of pollen, as illustrated in the accompanying photo, unwittingly transporting pollen from one flower to another. So, the next time you experience annoying static cling in your clothes, just remember that the same force helps pollinate the plants that we all need for life on Earth. 97. • Suppose two bees, each with a charge of 93.0 pC, are separated by a distance of 1.20 cm. Treating the bees as point charges, what is the magnitude of the electrostatic force experienced by the bees? (In comparison, the weight of a 0.140-g bee is 1.37 × 10 −3 N.) A. 6.01 × 10 −17 N B. 6.48 × 10 −9 N C. 5.40 × 10 −7 N D. 5.81 × 10 −3 N
Have you ever pulled clothes from a dryer only to have them “cling” together? Have you ever walked across a carpet and had a ’shocking” experience when you touched a doorknob? If so, you already know a lot about state electricity.
Ben Franklin showed that the same kind of spark we experience on a carpet, when scaled up in size, is responsible for bolts of lightning. His insight led to the invention of lightning rods to conduct electricity safely away from a building into the ground. Today we employ static electricity in many technological applications, ranging from photocopiers to electrostatic precipitators that clean emissions from smokestacks. We even use electrostatic salting machines to give potato chips the salty taste we enjoy!
Living organisms also use static electricity—in fact, static electricity plays an important role in the pollination process. Imagine a bee busily flitting from flower to flower. As air rushes over its body and wings it acquires an electric charge—just as you do when your feet rub against a carpet. A bee might have only 93.0 pC of charge, but that’s more than enough to attract grains of pollen from a distance, like a charged comb attracting bits of paper. The result is a bee covered with grains of pollen, as illustrated in the accompanying photo, unwittingly transporting pollen from one flower to another. So, the next time you experience annoying static cling in your clothes, just remember that the same force helps pollinate the plants that we all need for life on Earth.
97. • Suppose two bees, each with a charge of 93.0 pC, are separated by a distance of 1.20 cm. Treating the bees as point charges, what is the magnitude of the electrostatic force experienced by the bees? (In comparison, the weight of a 0.140-g bee is 1.37 × 10−3 N.)
At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?
Make a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.