Concept explainers
Balance each of the following unbalanced equations; then calculate the standard potential, E°, and decide whether each is product favored at equilibrium as written. (All reactions are carried out in acid solution.)
- (a) Sn2+(aq) + Ag(s) → Sn(s) + Ag+(aq)
- (b) Al(s) + Sn4+(aq) → Sn2+(aq) +Al3+(aq)
- (c) ClO3−(aq) + Ce3+(aq) → Cl2(g) + Ce4+(aq)
- (d) Cu(s) + NO3− (aq) → Cu2+(aq) + NO(g)
a)
Interpretation:
The
Concept introduction:
Electrochemical cells:
In this type of cells, chemical energy is converted into electrical energy.
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells.
Under certain conditions a cell potential is measured it is called as standard potential
Standard potential
The
The
Answer to Problem 19PS
The value is negative, therefore it is not product favoured.
Explanation of Solution
The given reaction is as follows.
Balance the each half reaction:
Find the overall reaction.
Let’s write the half reactions:
Let’s calculate the
The value is negative, therefore it is not product favoured.
b)
Interpretation:
The
Concept introduction:
Electrochemical cells:
In this type of cells, chemical energy is converted into electrical energy.
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells.
Under certain conditions a cell potential is measured it is called as standard potential
Standard potential
The
The
Answer to Problem 19PS
The value is positive, therefore it is a product favoured.
Explanation of Solution
The given reaction is as follows.
Balance the each half reaction:
Find the overall reaction.
Let’s write the half reactions:
Let’s calculate the
The value is positive, therefore it is a product favoured.
c)
Interpretation:
The
Concept introduction:
Electrochemical cells:
In this type of cells, chemical energy is converted into electrical energy.
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells.
Under certain conditions a cell potential is measured it is called as standard potential
Standard potential
The
The
Answer to Problem 19PS
The value is negative, therefore it is not a product favoured
Explanation of Solution
The given reaction is as follows.
Balance the each half reaction:
The second equation is multiply with 10 .we get equal number of electrons.
Find the overall reaction.
Let’s write the half reactions:
Let’s calculate the
The value is negative, therefore it is not a product favoured.
d)
Interpretation:
The
Concept introduction:
Electrochemical cells:
In this type of cells, chemical energy is converted into electrical energy.
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells.
Under certain conditions a cell potential is measured it is called as standard potential
Standard potential
The
The
Answer to Problem 19PS
The value is positive, therefore it is a product favoured.
Explanation of Solution
The given reaction is as follows.
Balance the each half reaction:
The first equation is multiplied with 3 and second equation is multiply with 2.we get equal number of electrons.
Find the overall reaction.
Let’s write the half reactions:
Let’s calculate the
The value is negative, therefore it is not product favoured.
Want to see more full solutions like this?
Chapter 19 Solutions
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
- Which carbocation is more stable?arrow_forwardAre the products of the given reaction correct? Why or why not?arrow_forwardThe question below asks why the products shown are NOT the correct products. I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products. That's the opposite of what the question was asking. Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates"). In other words, why is HCl added to the terminal alkene rather than the internal alkene?arrow_forward
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
- (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning