The equilibrium constants for the following reactions at 298 K have to be determined and also determine the equilibrium is a reactant or product favoured at equilibrium. (a) 2Cl - (aq) + Br 2 (l) → Cl 2 (g) + 2Br - (aq) Concept introduction: According to the first law of thermodynamics , the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system. The equation is as follows. ΔU = Q - W ΔU = Change in internal energy Q = Heat added to the system W=Work done by the system In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell. ΔG 0 = -nFE 0 n = Number of moles transferred per mole of reactant and products F = Faradayconstant=96485C/mol E 0 = Volts = Work(J)/Charge(C) The relation between standard cell potential and equilibrium constant is as follows. lnK = nE 0 0 .0257 at 298K
The equilibrium constants for the following reactions at 298 K have to be determined and also determine the equilibrium is a reactant or product favoured at equilibrium. (a) 2Cl - (aq) + Br 2 (l) → Cl 2 (g) + 2Br - (aq) Concept introduction: According to the first law of thermodynamics , the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system. The equation is as follows. ΔU = Q - W ΔU = Change in internal energy Q = Heat added to the system W=Work done by the system In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell. ΔG 0 = -nFE 0 n = Number of moles transferred per mole of reactant and products F = Faradayconstant=96485C/mol E 0 = Volts = Work(J)/Charge(C) The relation between standard cell potential and equilibrium constant is as follows. lnK = nE 0 0 .0257 at 298K
Solution Summary: The author explains that the equilibrium is a reactant or product favoured at equilibrium, according to the first law of thermodynamics.
Definition Definition Transformation of a chemical species into another chemical species. A chemical reaction consists of breaking existing bonds and forming new ones by changing the position of electrons. These reactions are best explained using a chemical equation.
Chapter 19, Problem 85GQ
(a)
Interpretation Introduction
Interpretation:
The equilibrium constants for the following reactions at 298 K have to be determined and also determine the equilibrium is a reactant or product favoured at equilibrium.
(a) 2Cl-(aq) + Br2(l) →Cl2(g) + 2Br-(aq)
Concept introduction:
According to the first law of thermodynamics, the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system.
The equation is as follows.
ΔU = Q - WΔU = Change in internal energyQ = Heat added to the systemW=Work done by the system
In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell.
ΔG0= -nFE0n = Number of moles transferred per mole of reactant and productsF = Faradayconstant=96485C/mol E0= Volts = Work(J)/Charge(C)
The relation between standard cell potential and equilibrium constant is as follows.
lnK = nE00.0257 at 298K
(b)
Interpretation Introduction
Interpretation:
The equilibrium constants for the following reactions at 298 K have to be determined and also determine the equilibrium is a reactant or product favoured at equilibrium.
(b) Fe2+(aq) + Ag+(aq) →Fe3+(aq) + Ag(s)
Concept introduction:
According to the first law of thermodynamics, the change in internal energy of a system is equal ti the heat added to the sysytem minus the work done by the system.
The equation is as follows.
ΔU = Q - WΔU = Change in internal energyQ = Heat added to the systemW=Work done by the system
In voltaic cell, the maximum cell potential is directly related to the free energy difference between the reactants and products in the cell.
ΔG0= -nFE0n = Number of moles transferred per mole of reactant and productsF = Faradayconstant=96485C/mol E0= Volts = Work(J)/Charge(C)
The relation between standard cell potential and equilibrium constant is as follows.
please provide the structure for this problem, thank you!
Draw the Fischer projection from the skeletal
structure shown below.
HO
OH
OH
OH
OH H
Q
Drawing
Atoms, Bonds
and Rings
Charges
I
☐
T
HO
H
H
OH
HO
I
CH2OH
H
OH
Drag
H
OH
-CH2OH
CHO
-COOH
Undo
Reset
Remove
Done
please provide the structure for this problem, thank you
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.