Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 19.8P
For the drilled shaft described in Problem 19.7, estimate the total elastic settlement at working load. Use Eqs. (18.45), (18.47), and (18.48). Assume that Ep = 20 × 106 kN/m2, μs = 0.3, Es = 12 × 103 kN/m2, ξ = 0.65 and Cp = 0.03. Assume 80% mobilization of skin resistance at working load. (See Part c of Problem 19.7)
19.7 Figure 19.16 shows a drilled shaft without a bell. Here, L1 = 6 m, L2 = 7 m, Ds = 1.5 m, cu(1) = 50 kN/m2, and cu(2) = 75 kN/m2. Find these values:
a. The net ultimate point bearing capacity. Use Eqs. (19.23) and (19.24)
b. The ultimate skin resistance. Use Eqs. (19.26) and (19.28)
c. The working load, Qw (FS = 3)
FIG. 19.16
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A free-headed drilled shaft, shown in Figure 4, has an elastic modulus, Ep = 20,000 MPa.
M, = 880 kN m
Q = 245 kN,
Sand
at = 19 kN/m3
O' = 34°
1.2 m
Figure 4
(a) Determine the ground line deflection, x.
Take o, = 580 kPa
(Figure 1)
Express your answer to three significant figures and include the appropriate units.
HÀ
?
o, =
Value
Units
Submit
Request Answer
Figure
Part B
Determine the shear stress acting on the inclined plane AB.
Express your answer to three significant figures and include the appropriate units.
В
HA
?
30°
Value
Units
A
1. Triaxial compression tests are done on quartzite rocks, the results are shown below.
(0₁+03)/2 -964.25 14500 19575 23200 29000 43210 63075 psi
(01-03)/2 964.25 14500 18850 21750 26100 35960 48575 psi
Comment on the applicability of each of the Mohr-Coulomb, Griffith, and Hoek-Brown criteria for the
testing results.
Chapter 19 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Ch. 19 - Prob. 19.1PCh. 19 - Prob. 19.2PCh. 19 - Redo Problem 19.2. Use Eq. (19.4) and Es = 600 pa....Ch. 19 - For the drilled shaft described in Problem 19.2,...Ch. 19 - Prob. 19.5PCh. 19 - Prob. 19.6PCh. 19 - Prob. 19.7PCh. 19 - For the drilled shaft described in Problem 19.7,...Ch. 19 - For the drilled shaft described in Problem 19.7,...Ch. 19 - Prob. 19.10P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A free-headed drilled shaft is shown in Figure P13.10. Let Qg = 260 kN, Mg = 0, = 17.5 kN/m3, = 35, c' = 0, and Ep = 22 106 kN/m2. Determine a. The ground line deflection, xo b. The maximum bending moment in the drilled shaft c. The maximum tensile stress in the shaft d. The minimum penetration of the shaft needed for this analysisarrow_forward(1) A well is drilling to the depth of 6000 m. Formation pore pressure can be expressed in equivalent mud weight is 1.50 g/cm' at the depth and changes in proportion to well depth. Also, overburden pressure gradient is 0.0245 MPa/m. Calculate: a. Pore pressure gradient at 6000 m, MPa/m. b.Pore pressure, psi, at 6000 m. c. Matrix stress gradient, MPa/m d.Matrix stress at 6000 m, MPaarrow_forwardRefer to Figure 11.26b. For the drilled shaft with bell, given:Thickness of active zone, Z = 9 mDead load = 1500 kN Live load = 300 kNDiameter of the shaft, Ds = 1 mZero swell pressure for the clay in the active zone = 600 kN/m2Average angle of plinth-soil friction, Φ'ps = 20°Average undrained cohesion of the clay around the bell = 150 kN/m2. Determine the diameter of the bell, Db. A factor of safety of 3 against uplift is required with the assumption that dead load plus live load is equal to zero.arrow_forward
- Figure P13.9 shows a drilled shaft extending into clay shale. Given: qu (clay shale) = 1.81 MN/m2. Considering the socket to be rough, estimate the allowable load-carrying capacity of the drilled shaft. Use FS = 4. Use the Zhang and Einstein procedure.arrow_forwardFigure P10.7 shows a drilled shaft without a bell. Assume the following values:L1 = 6 m cu(1) = 50 kN/m2L2 = 7 m cu(2) = 75 kN/m2Ds = 1.5 mDetermine:a. The net ultimate point bearing capacity [use Eqs. (10.33) and (10.34)]b. The ultimate skin friction [use Eqs. (10.37) and (10.39)]c. The working load Qw (factor of safety = 3)arrow_forwardplease answer it asap. thank you!!arrow_forward
- Please correct solutionarrow_forwardPlease solve fully. Thanksarrow_forward3. The following table shows the shear test results along the foliation surfaces of gneisses. The area of the discontinuity surface is 6.4*10-3 m2. a) Fill in the table b) Calculate the slip resistance parameters of the gnaysa ). (use millimeter paper) Experiment No. Shearing Normal Load Shearing Normal burden Tensile Stress (kg) (kg) (kg/cm2) (kg /cm? 1 750 500 1400 1200 3 1600 1400 4 2000 1800 2500 3500 6. 3000 4250arrow_forward
- Q3) You are in charge of drilling operations in a sedimentary basin. The figure bellow gives the setting. Prior to drilling you have performed a numerical analysis. The table below states the necessary information at the bottom of the shale layer and at the top of the sandstone layer. Assume hydrostatic pore pressure throughout the reservoir. Stress results from your numerical models at 2250m: To [MPa] Rock layer Sy [MPa] S [MPa] S, [MPa] [deg] So [MPa] Shale Sandstone 55.2 55.2 65 40 30 20 10 0.25 30 25 30 10 5 0.25 planned wellpath Shale thickness- 2250m Sandstone: thidkness 250m A. Your drilling crew on the rig wants to drill with a setting P-Po through the shale. Will you approve this and give permission? Prove your decision by calculating the necessary stresses and show a Mohr Circle construction so that the driller can understand your reason. If unsafe, which borehole failure mechanism do we expect? ; B. Should they increase, decrease P, or stay with P=Po? Why? C. Determine the…arrow_forwardProblem 3. The strain rosette shown has angles 0, = 0° (aligned with the x-axis), 0, = 60°, and 0, = 120°, We attach it to a body and then load the body. The strain m m rosette reports the following values: E = 500µ, E, =1200µ, and ɛ. 100µ- m Recall for a delta rosette: Ex = Ea %3D 1 Ey 3 =(26, +26, - 8.) %3D 2 Yy = J a Sketch Mohr's Circle for Strain. Indicate the following Y Max 20,, &,, E2, and- InPlane on your sketch the followinge 2 Determine the following: E2. Op. YMax InPlanearrow_forwardShow solution. The answer must be A. 36.87 B. 14arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
CE 414 Lecture 02: LRFD Load Combinations (2021.01.22); Author: Gregory Michaelson;https://www.youtube.com/watch?v=6npEyQ-2T5w;License: Standard Youtube License