Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 19.9P
For the drilled shaft described in Problem 19.7, determine these values:
a. The ultimate load-carrying capacity
b. The load-carrying capacity for a settlement of 25 mm
Use the procedure outlined in Section 19.8.
19.7 Figure 19.16 shows a drilled shaft without a bell. Here, L1 = 6 m, L2 = 7 m, Ds = 1.5 m, cu(1) = 50 kN/m2, and cu(2) = 75 kN/m2. Find these values:
a. The net ultimate point bearing capacity. Use Eqs. (19.23) and (19.24)
b. The ultimate skin resistance. Use Eqs. (19.26) and (19.28)
c. The working load, Qw (FS = 3)
FIG. 19.16
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Figure P10.7 shows a drilled shaft without a bell. Assume the following values:L1 = 6 m cu(1) = 50 kN/m2L2 = 7 m cu(2) = 75 kN/m2Ds = 1.5 mDetermine:a. The net ultimate point bearing capacity [use Eqs. (10.33) and (10.34)]b. The ultimate skin friction [use Eqs. (10.37) and (10.39)]c. The working load Qw (factor of safety = 3)
A free-headed drilled shaft, shown in Figure 4, has an elastic modulus, Ep = 20,000 MPa.
M, = 880 kN m
Q = 245 kN,
Sand
at = 19 kN/m3
O' = 34°
1.2 m
Figure 4
(a) Determine the ground line deflection, x.
Refer to Figure 11.26b. For the drilled shaft with bell, given:Thickness of active zone, Z = 9 mDead load = 1500 kN Live load = 300 kNDiameter of the shaft, Ds = 1 mZero swell pressure for the clay in the active zone = 600 kN/m2Average angle of plinth-soil friction, Φ'ps = 20°Average undrained cohesion of the clay around the bell = 150 kN/m2. Determine the diameter of the bell, Db. A factor of safety of 3 against uplift is required with the assumption that dead load plus live load is equal to zero.
Chapter 19 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Ch. 19 - Prob. 19.1PCh. 19 - Prob. 19.2PCh. 19 - Redo Problem 19.2. Use Eq. (19.4) and Es = 600 pa....Ch. 19 - For the drilled shaft described in Problem 19.2,...Ch. 19 - Prob. 19.5PCh. 19 - Prob. 19.6PCh. 19 - Prob. 19.7PCh. 19 - For the drilled shaft described in Problem 19.7,...Ch. 19 - For the drilled shaft described in Problem 19.7,...Ch. 19 - Prob. 19.10P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Figure P13.9 shows a drilled shaft extending into clay shale. Given: qu (clay shale) = 1.81 MN/m2. Considering the socket to be rough, estimate the allowable load-carrying capacity of the drilled shaft. Use FS = 4. Use the Zhang and Einstein procedure.arrow_forwardA free-headed drilled shaft is shown in Figure P13.10. Let Qg = 260 kN, Mg = 0, = 17.5 kN/m3, = 35, c' = 0, and Ep = 22 106 kN/m2. Determine a. The ground line deflection, xo b. The maximum bending moment in the drilled shaft c. The maximum tensile stress in the shaft d. The minimum penetration of the shaft needed for this analysisarrow_forwardFor the drilled shaft described in Problem 19.7, estimate the total elastic settlement at working load. Use Eqs. (18.45), (18.47), and (18.48). Assume that Ep = 20 106 kN/m2, s = 0.3, Es = 12 103 kN/m2, = 0.65 and Cp = 0.03. Assume 80% mobilization of skin resistance at working load. (See Part c of Problem 19.7) 19.7 Figure 19.16 shows a drilled shaft without a bell. Here, L1 = 6 m, L2 = 7 m, Ds = 1.5 m, cu(1) = 50 kN/m2, and cu(2) = 75 kN/m2. Find these values: a. The net ultimate point bearing capacity. Use Eqs. (19.23) and (19.24) b. The ultimate skin resistance. Use Eqs. (19.26) and (19.28) c. The working load, Qw (FS = 3) FIG. 19.16arrow_forward
- A drilled shaft constructed in medium sand is shown in the figure below. Given information is: y = 18 kN/m', '= 38°. Sand is medium-density sand, and the average standard penetration number (N60) within 2Ds below the drilled shaft is 19. Using the method proposed by Reese and O'Neill, determine the following: (a) The net allowable point resistance for a base movement of 25 mm. (b) The shaft frictional resistance for a base movement of 25 mm. (c) The total load that can be carried by the drilled shaft for a total base movement of 25 mm. 1 m 11 m 12 m - 2 marrow_forwardThis is I'm uploading second time. If you don't know the solution please leave it but don't copy from other experts solution. Give me right solution with clear calculations.arrow_forwardEx.4: A well of diameter 12 ½ in ( capacity = 0.15 bbl/ft ) is drilled by drilling mud of density 9.6 ppg at drilling velocity of 23 ft/min and flow rate 720 gpm, if the density of cutting rock is 20.8 ppg. Find the density of drilling mud in the annulus taking in to account effect of cutting rock?arrow_forward
- A drilled shaft designed in accordance with the AASHTO code must support the following downward and uplift axial design loads: P = 850 k, Pup. = 270 k. The soil profile consists of: Undrained Shear Strength, s,, (lb/ft²) Depth (ft) Soil Description Unit Weight, y (lb/ft³) N60 0-15 Clayey silt 115 1200 15-35 Silty clay 112 1800 35-55 Sandy silt (nonplastic) 115 24 55-80 Silty sand 124 43 Practice Problems 597 The groundwater is at a depth of 50 ft. Using the AASHTO resistance factors, select a diameter and depth for a single drilled shaft to support these design loads. Use a load factor of 0.9 on the weight of the shaft. Note there are many different diameter-length combinations that would be satisfactory, but select one that you think would be most appropriate.arrow_forwardQ3 (a) A core sample of granite was drilled at 1.5 m length at Muar. Based on the rock core sample as shown in Figure Q3(a), determine the Total Core Recovery (TCR), Solid Core Recovery (SCR) and Rock Quality Designation (RQD).arrow_forwardThe following data for an exploration well of 13,000 ft depth: Hole diameter = 8.1/2 inch Hole depth = 13,000 ft Plastic viscosity = 35 cP Yield point = 25 lb / 100 ft² Mud weight = 13 lb / gal Flow rate = 400 gpm Drill pipe ID = 4.276 in / OD = 5 in Drill collars ID = 2.875 in / OD = 6.5 in / Length = 500 ft Previous casing = 95/8 in / ID = 8.755 in set at 10,000 ft Pump pressure = 3000 psi Surface equipment type = 4 1. According to the above information calculate the following by using the Bingham plastic model and power-law model. • The nozzle sizes • The bottom hole pressure while circulating 2. Compare and discuss the results. Explain which model is more accurate. 3. Compare the two models with Hughes charts. Compare the results of the models and charts with bit hydraulic optimization software given.arrow_forward
- (1) A well is drilling to the depth of 6000 m. Formation pore pressure can be expressed in equivalent mud weight is 1.50 g/cm' at the depth and changes in proportion to well depth. Also, overburden pressure gradient is 0.0245 MPa/m. Calculate: a. Pore pressure gradient at 6000 m, MPa/m. b.Pore pressure, psi, at 6000 m. c. Matrix stress gradient, MPa/m d.Matrix stress at 6000 m, MPaarrow_forwardsubjectarrow_forwardFor the same data given in Problem 13.4, determine the load-carrying capacity of the drilled shaft, limiting the settlement to 10.0 mm. 13.4 Determine the ultimate load-carrying capacity of the drilled shaft shown in Figure P13.4, using the Reese and ONeill (1989) method.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
CE 414 Lecture 02: LRFD Load Combinations (2021.01.22); Author: Gregory Michaelson;https://www.youtube.com/watch?v=6npEyQ-2T5w;License: Standard Youtube License