Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
2nd Edition
ISBN: 9780393655551
Author: KARTY, Joel
Publisher: W. W. Norton & Company
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 19, Problem 19.44P
Interpretation Introduction

(a)

Interpretation:

The product of the given reaction is to be predicted.

Concept introduction:

The carbonyl groups of aldehyde or ketone can be reduced to methylene i.e. C=O to CH2 using the reactions like Wolff-Kishner reduction, Clemmensen reduction, and Raney-nickel reduction. Clemmensen reduction uses a zinc amalgam, which is an alloy (blend) of zinc with mercury. The ketone or aldehyde is refluxed (i.e., continuously evaporated and recondensed under heat) with the amalgam in concentrated HCl solution.

Interpretation Introduction

(b)

Interpretation:

The product of the given reaction is to be predicted

Concept introduction:

The carbonyl groups of aldehyde or ketone can be reduced to methylene i.e. C=O to CH2 using the reactions like Wolff-Kishner reduction, Clemmensen reduction, and Raney-nickel reduction. The reagent used for Wolff-Kishner reduction is NH2NH2, NaOH, H2O,Δ.

Interpretation Introduction

(c)

Interpretation: The product of the given reaction is to be predicted

Concept introduction:

The carbonyl groups of aldehyde or ketone can be reduced to methylene i.e. C=O to CH2 using reactions like Wolff-Kishner reduction, Clemmensen reduction, and Raney-nickel reduction. In a Raney-nickel reduction, the ketone or aldehyde is first converted to a thioacetal by treatment with a thiol under acidic conditions. Subsequent treatment with Raney nickel converts the thioacetal group to a methylene group.

Blurred answer
Students have asked these similar questions
Sapp ektiv.com Free Response Work-Aktiv Problem 2 of 35 Your Response Submit Aldehyde electrophiles generally react more quickly than ketones in nucleophilic addition reactions. Explain the difference in reactivity. Make a clear claim about these structures and the characteristics of this reaction. Briefly state the evidence and relate the evidence clearly to your explanation. Type in your prompt for the question. Click "Add Equation/Symbols" to insert symbols and expressions. 回 =Add Equation/Symbols Feb 15 9:54
Can you please color-code and explain how to solve this and any molecular orbital diagram given? I'm so confused; could you provide baby steps regardless of which problem type they gave me?
Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures draw the curved electon-pushing arrows for the following reaction or mechanistic steps. Be sure to account for all bond-breaking and bond-making steps.

Chapter 19 Solutions

Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)

Ch. 19 - Prob. 19.11PCh. 19 - Prob. 19.12PCh. 19 - Prob. 19.13PCh. 19 - Prob. 19.14PCh. 19 - Prob. 19.15PCh. 19 - Prob. 19.16PCh. 19 - Prob. 19.17PCh. 19 - Prob. 19.18PCh. 19 - Prob. 19.19PCh. 19 - Prob. 19.20PCh. 19 - Prob. 19.21PCh. 19 - Prob. 19.22PCh. 19 - Prob. 19.23PCh. 19 - Prob. 19.24PCh. 19 - Prob. 19.25PCh. 19 - Prob. 19.26PCh. 19 - Prob. 19.27PCh. 19 - Prob. 19.28PCh. 19 - Prob. 19.29PCh. 19 - Prob. 19.30PCh. 19 - Prob. 19.31PCh. 19 - Prob. 19.32PCh. 19 - Prob. 19.33PCh. 19 - Prob. 19.34PCh. 19 - Prob. 19.35PCh. 19 - Prob. 19.36PCh. 19 - Prob. 19.37PCh. 19 - Prob. 19.38PCh. 19 - Prob. 19.39PCh. 19 - Prob. 19.40PCh. 19 - Prob. 19.41PCh. 19 - Prob. 19.42PCh. 19 - Prob. 19.43PCh. 19 - Prob. 19.44PCh. 19 - Prob. 19.45PCh. 19 - Prob. 19.46PCh. 19 - Prob. 19.47PCh. 19 - Prob. 19.48PCh. 19 - Prob. 19.49PCh. 19 - Prob. 19.50PCh. 19 - Prob. 19.51PCh. 19 - Prob. 19.52PCh. 19 - Prob. 19.53PCh. 19 - Prob. 19.54PCh. 19 - Prob. 19.55PCh. 19 - Prob. 19.56PCh. 19 - Prob. 19.57PCh. 19 - Prob. 19.58PCh. 19 - Prob. 19.59PCh. 19 - Prob. 19.60PCh. 19 - Prob. 19.61PCh. 19 - Prob. 19.62PCh. 19 - Prob. 19.63PCh. 19 - Prob. 19.64PCh. 19 - Prob. 19.65PCh. 19 - Prob. 19.66PCh. 19 - Prob. 19.67PCh. 19 - Prob. 19.68PCh. 19 - Prob. 19.69PCh. 19 - Prob. 19.70PCh. 19 - Prob. 19.71PCh. 19 - Prob. 19.72PCh. 19 - Prob. 19.73PCh. 19 - Prob. 19.74PCh. 19 - Prob. 19.75PCh. 19 - Prob. 19.76PCh. 19 - Prob. 19.77PCh. 19 - Prob. 19.78PCh. 19 - Prob. 19.79PCh. 19 - Prob. 19.1YTCh. 19 - Prob. 19.2YTCh. 19 - Prob. 19.3YTCh. 19 - Prob. 19.4YTCh. 19 - Prob. 19.5YTCh. 19 - Prob. 19.6YTCh. 19 - Prob. 19.7YTCh. 19 - Prob. 19.8YTCh. 19 - Prob. 19.9YTCh. 19 - Prob. 19.10YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
EBK A SMALL SCALE APPROACH TO ORGANIC L
Chemistry
ISBN:9781305446021
Author:Lampman
Publisher:CENGAGE LEARNING - CONSIGNMENT
Coenzymes and cofactors; Author: CH15 SWAYAM Prabha IIT Madras;https://www.youtube.com/watch?v=bubY2Nm7hVM;License: Standard YouTube License, CC-BY
Aromaticity and Huckel's Rule; Author: Professor Dave Explains;https://www.youtube.com/watch?v=7-BguH4_WBQ;License: Standard Youtube License