(a)
Interpretation:
The cell potential (EMF) of given cell should be calculated at standard conditions by using Nernst equation.
Concept introduction:
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
Nernst equation:
The relationship between standard cell potential and cell potential at non standard conditions and the reaction quotient are given by Nernst equation it is,
Where,
(a)
Answer to Problem 19.146QP
The cell potential (EMF) of given voltaic cell is
Explanation of Solution
To calculate the cell potential (EMF) of given cell
The standard reduction potentials of (SRP) of Zinc and Silver are record from standard reduction potentials table and they are,
The most positive SQR is considering as cathode potential.
The SRP of electrodes are plugged in the bellow equation to give cell potential of given voltaic cell.
The cell potential (EMF) of given voltaic cell is
To calculate the cell potential (EMF) of given cell
Given:
Mass of
Mass of
Final volume of
Final volume of
To calculate the concentrations of
Molar mass of
Molar mass of
Taken mass and molar mass of
In this cell reaction, number of electrons transferred are 2
Faraday constant is
The calculated standard cell potential (EMF) of given voltaic cell, number of electron transferred in cell reaction, Faraday constant and calculated concentrations of ions are plugged in the above equation to give a cell potential (EMF) of given cell at non standard conditions.
The cell potential (EMF) of given cell at non-standard conditions is
The cell potential (EMF) of given cell was calculated at standard condition by using Nernst equation and it was found to be
(b)
Interpretation:
The free energy change of given voltaic cell should be calculated by using standard reduction potentials and cell potential of the cell should be explained, when doing given operations to the cell.
Concept introduction:
Free energy change:
In
Where,
(b)
Answer to Problem 19.146QP
Solution:
The free energy change of voltaic cell is
Explanation of Solution
To calculate the free energy change of given cell:
In this cell reaction number of electron transferred are 2
Faraday constant is
The calculated cell potential (EMF) of given voltaic cell and number of electron transferred in cell reaction and Faraday constant are plugged in the above equation to give a free energy change of given cell.
The free energy change of given cell reaction is
(c)
Interpretation:
The cell potential (EMF) of given cell should be explained in terms of concentration of
Concept introduction:
Nernst equation:
The relationship between standard cell potential and cell potential at standard conditions and the reaction quotient are given by Nernst equation it is,
Where,
(c)
Answer to Problem 19.146QP
The concentration of
Explanation of Solution
According to the Nernst equation, the concentration of makes changes in cell potential but in addition of
Hence, the concentration of
(d)
Interpretation:
The cell potential (EMF) of given cell should be explained in terms of electrode concentration.
Concept introduction:
Nernst equation:
The relationship between standard cell potential and cell potential at standard conditions and the reaction quotient are given by Nernst equation it is,
Where,
(d)
Answer to Problem 19.146QP
The cell potential would not affected by increasing mass of zinc electrode.
Explanation of Solution
The cell potential does not depended on mass of electrodes in voltaic cell.
Hence, the cell potential would not affected by increasing mass of zinc electrode.
(e)
Interpretation:
The cell potential (EMF) of given cell should be explained, when the addition of
Concept introduction:
Nernst equation:
The relationship between standard cell potential and cell potential at standard conditions and the reaction quotient are given by Nernst equation it is,
Where,
(e)
Answer to Problem 19.146QP
The addition of
Explanation of Solution
According to the Nernst equation, the addition of
Want to see more full solutions like this?
Chapter 19 Solutions
General Chemistry - Standalone book (MindTap Course List)
- Predict the chemical reactions that will occur at the two electrodes in the electrolysis of an aqueous sodium hydroxide solution.arrow_forwardConsider the following cell running under standard conditions: Fe(s)Fe2+(aq)Al3+(aq)Al(s) a Is this a voltaic cell? b Which species is being reduced during the chemical reaction? c Which species is the oxidizing agent? d What happens to the concentration of Fe3+(aq) as the reaction proceeds? e How does the mass of Al(s) change as the reaction proceeds?arrow_forwardAn electrolytic cell is set up with Cd(s) in Cd(NO3)2(aq) and Zn(s) in Zn(NO3)2(aq). Initially both electrodesweigh 5.00 g. After running the cell for several hours theelectrode in the left compartment weighs 4.75 g. (a) Which electrode is in the left compartment? (b) Does the mass of the electrode in the right compartmentincrease, decrease, or stay the same? If the masschanges, what is the new mass? (c) Does the volume of the electrode in the right compartment increase, decrease, or stay the same? If the volumechanges, what is the new volume? (The density of Cd is8.65 g/cm3.)arrow_forward
- An aqueous solution of KBr is placed in a beaker with two inert platinum electrodes. When the cell is attached to an external source of electrical energy, electrolysis occurs. (a) Hydrogen gas and hydroxide ion form at the cathode. Write an equation for the half-reaction that occurs at this electrode. (b) Bromine is the primary product at the anode. Write an equation for its formation.arrow_forwardFour metals, A, B, C, and D, exhibit the following properties: (a) Only A and C react with 1.0 M hydrochloric acid to give H2(g). (b) When C is added to solutions of the ions of the other metals, metallic B, D, and A are formed. (c) Metal D reduces Bn+ to give metallic B and Dn+. Based on this information, arrange the four metals in order of increasing ability to act as reducing agents.arrow_forwardA factory wants to produce 1.00 103 kg barium from the electrolysis of molten barium chloride. What current must be applied for 4.00 h to accomplish this?arrow_forward
- The iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forwardThe following two half-reactions arc involved in a voltaic cell. At standard conditions, what species is produced at each electrode? Ag++eAgE=0.80VNi2++2eNiE=0.25Varrow_forwardA solution of copper(II) sulfate is electrolyzed by passing a current through the solution using inert electrodes. Consequently, there is a decrease in the Cu2+ concentration and an increase in the hydronium ion concentration. Also, one electrode increases in mass and a gas evolves at the other electrode. Write half-reactions that occur at the anode and at the cathode.arrow_forward
- As the voltaic cell shown here runs, the blue solution gradually gets lighter in color and the gray solution gets darker. (a) What species is oxidized and what is reduced? (b) Which electrode is the anode and which is the cathode? (C) Which metal electrode gains mass? (d) In which direction do electrons flow through the external circuit?arrow_forward1. If you wish to convert 0.0100 mol of Au3+ (aq) ions into Au(s) in a “gold-plating” process, how long must you electrolyze a solution if the current passing through the circuit is 2.00 amps? 483 seconds 4.83 104 seconds 965 seconds 1450 secondsarrow_forwardWhat does it mean for a substance to be oxidized? The term “oxidation” originally came from substances reacting with oxygen gas. Explain why a substance that reacts with oxygen gas will always be oxidized.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning