General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN: 9781305580343
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 19.123QP
An aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold.
- a How many faradays are required to deposit the gold?
- b What is the charge on the gold ions (based on your calculations)?
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 19 Solutions
General Chemistry - Standalone book (MindTap Course List)
Ch. 19.1 - Iodic acid, HIO3, can be prepared by reading...Ch. 19.1 - Balance the following equation using the...Ch. 19.2 - A voltaic cell consists of a silversilver ion...Ch. 19.2 - If you were to construct a wet cell and decided to...Ch. 19.3 - Prob. 19.4ECh. 19.3 - Prob. 19.5ECh. 19.4 - What is the maximum electrical work, that can be...Ch. 19.5 - Prob. 19.7ECh. 19.5 - Prob. 19.8ECh. 19.5 - Prob. 19.9E
Ch. 19.5 - Prob. 19.2CCCh. 19.6 - Prob. 19.10ECh. 19.6 - Prob. 19.11ECh. 19.6 - Prob. 19.12ECh. 19.7 - What is the cell potential of the following...Ch. 19.7 - What is the nickel(II)-ion concentration in the...Ch. 19.7 - Prob. 19.3CCCh. 19.8 - Prob. 19.4CCCh. 19.9 - Write the half-reactions for the electrolysis of...Ch. 19.10 - Prob. 19.16ECh. 19.11 - A constant electric current deposits 365 mg of...Ch. 19.11 - How many grams of oxygen are liberated by the...Ch. 19 - Describe the difference between a voltaic cell and...Ch. 19 - Prob. 19.2QPCh. 19 - What is the SI unit of electrical potential?Ch. 19 - Define the faraday.Ch. 19 - Why is it necessary to measure the voltage of a...Ch. 19 - Prob. 19.6QPCh. 19 - Prob. 19.7QPCh. 19 - Prob. 19.8QPCh. 19 - Prob. 19.9QPCh. 19 - Prob. 19.10QPCh. 19 - Prob. 19.11QPCh. 19 - Prob. 19.12QPCh. 19 - Prob. 19.13QPCh. 19 - Prob. 19.14QPCh. 19 - Prob. 19.15QPCh. 19 - Prob. 19.16QPCh. 19 - Briefly explain why different products are...Ch. 19 - Prob. 19.18QPCh. 19 - Prob. 19.19QPCh. 19 - What half-reaction would be expected to occur at...Ch. 19 - Prob. 19.21QPCh. 19 - The voltaic cell is represented as...Ch. 19 - Electrochemical Cells I You have the following...Ch. 19 - Electrochemical Cells II Consider this cell...Ch. 19 - Prob. 19.25QPCh. 19 - Prob. 19.26QPCh. 19 - Prob. 19.27QPCh. 19 - Prob. 19.28QPCh. 19 - Prob. 19.29QPCh. 19 - Prob. 19.30QPCh. 19 - Prob. 19.31QPCh. 19 - You have 1.0 M solutions of Al(NO3)3 and AgNO3...Ch. 19 - The zinc copper voltaic cell shown with this...Ch. 19 - The development of lightweight batteries is an...Ch. 19 - Prob. 19.35QPCh. 19 - Prob. 19.36QPCh. 19 - Balance the following oxidationreduction...Ch. 19 - Balance the following oxidationreduction...Ch. 19 - Balance the following oxidationreduction...Ch. 19 - Prob. 19.40QPCh. 19 - Balance the following oxidationreduction...Ch. 19 - Prob. 19.42QPCh. 19 - A voltaic cell is constructed from the following...Ch. 19 - Half-cells were made from a nickel rod dipping in...Ch. 19 - Zinc react spontaneously with silver ion....Ch. 19 - Prob. 19.46QPCh. 19 - A silver oxidezinc cell maintains a fairly...Ch. 19 - A mercury battery, used for hearing aids and...Ch. 19 - Write the cell notation for a voltaic cell with...Ch. 19 - Write the cell notation for a voltaic cell with...Ch. 19 - Give the notation for a voltaic cell constructed...Ch. 19 - A voltaic cell has an iron rod in 0.30 M iron(III)...Ch. 19 - Prob. 19.53QPCh. 19 - Write the overall cell reaction for the following...Ch. 19 - Consider the voltaic cell...Ch. 19 - Consider the voltaic cell...Ch. 19 - A voltaic cell whose cell reaction is...Ch. 19 - A particular voltaic cell operates on the reaction...Ch. 19 - What is the maximum work you can obtain from 30.0...Ch. 19 - Calculate the maximum work available from 50.0 g...Ch. 19 - Order the following oxidizing agents by increasing...Ch. 19 - Order the following oxidizing agents by increasing...Ch. 19 - Consider the reducing agents Cu+(aq), Zn(s), and...Ch. 19 - Prob. 19.64QPCh. 19 - Prob. 19.65QPCh. 19 - Answer the following questions by referring to...Ch. 19 - Prob. 19.67QPCh. 19 - Dichromate ion, Cr2O72, is added to an acidic...Ch. 19 - Calculate the standard cell potential of the...Ch. 19 - Calculate the standard cell potential of the...Ch. 19 - What is the standard cell potential you would...Ch. 19 - What is the standard cell potential you would...Ch. 19 - Calculate the standard free-energy change at 25C...Ch. 19 - Calculate the standard free-energy change at 25C...Ch. 19 - What is G for the following reaction?...Ch. 19 - Prob. 19.76QPCh. 19 - Calculate the standard cell potential at 25C for...Ch. 19 - Calculate the standard cell potential at 25C for...Ch. 19 - Prob. 19.79QPCh. 19 - Calculate the standard cell potential of the cell...Ch. 19 - Calculate the equilibrium constant K for the...Ch. 19 - Calculate the equilibrium constant K for the...Ch. 19 - Copper(I) ion can act as both an oxidizing agent...Ch. 19 - Prob. 19.84QPCh. 19 - Calculate the cell potential of the following cell...Ch. 19 - What is the cell potential of the following cell...Ch. 19 - Calculate the cell potential of a cell operating...Ch. 19 - Calculate the cell potential of a cell operating...Ch. 19 - The voltaic cell Cd(s)Cd2+(aq)Ni2+(1.0M)Ni(s) has...Ch. 19 - The cell potential of the following cell at 25C is...Ch. 19 - What are the half-reactions in the electrolysis of...Ch. 19 - What are the half-reactions in the electrolysis of...Ch. 19 - Describe what you expect to happen when the...Ch. 19 - Prob. 19.94QPCh. 19 - In the commercial preparation of aluminum,...Ch. 19 - Chlorine, Cl2, is produced commercially by the...Ch. 19 - When molten lithium chloride, LiCl, is...Ch. 19 - How many grams of cadmium are deposited from an...Ch. 19 - Some metals, such as iron, can be oxidized to more...Ch. 19 - Some metals, such as thallium, can be oxidized to...Ch. 19 - Balance the following skeleton equations. The...Ch. 19 - Prob. 19.102QPCh. 19 - Prob. 19.103QPCh. 19 - Prob. 19.104QPCh. 19 - Prob. 19.105QPCh. 19 - Give the notation for a voltaic cell whose overall...Ch. 19 - Prob. 19.107QPCh. 19 - Use electrode potentials to answer the following...Ch. 19 - Prob. 19.109QPCh. 19 - Prob. 19.110QPCh. 19 - a Calculate the equilibrium constant for the...Ch. 19 - Prob. 19.112QPCh. 19 - How many faradays are required for each of the...Ch. 19 - Prob. 19.114QPCh. 19 - In an analytical determination of arsenic, a...Ch. 19 - Prob. 19.116QPCh. 19 - Prob. 19.117QPCh. 19 - Prob. 19.118QPCh. 19 - A solution of copper(II) sulfate is electrolyzed...Ch. 19 - A potassium chloride solution is electrolyzed by...Ch. 19 - A constant current of 1.40 amp is passed through...Ch. 19 - A constant current of 1.25 amp is passed through...Ch. 19 - An aqueous solution of an unknown salt of gold is...Ch. 19 - An aqueous solution of an unknown salt of vanadium...Ch. 19 - An electrochemical cell is made by placing a zinc...Ch. 19 - An electrochemical cell is made by placing an iron...Ch. 19 - Prob. 19.127QPCh. 19 - a Calculate G for the following cell reaction:...Ch. 19 - Prob. 19.129QPCh. 19 - Prob. 19.130QPCh. 19 - A voltaic cell is constructed from a half-cell in...Ch. 19 - Prob. 19.132QPCh. 19 - Prob. 19.133QPCh. 19 - Order the following oxidizing agents by increasing...Ch. 19 - What is the cell potential (Ecell) of a...Ch. 19 - Prob. 19.136QPCh. 19 - Which of the following reactions occur...Ch. 19 - Prob. 19.138QPCh. 19 - The following two half-reactions arc involved in a...Ch. 19 - Prob. 19.140QPCh. 19 - Prob. 19.141QPCh. 19 - A 1.0-L sample of 1.0 M HCl solution has a 10.0 A...Ch. 19 - Consider the following cell running under standard...Ch. 19 - Prob. 19.144QPCh. 19 - Prob. 19.145QPCh. 19 - Prob. 19.146QPCh. 19 - Consider the following cell reaction at 25C....Ch. 19 - Consider the following cell reaction at 25C....Ch. 19 - Prob. 19.149QPCh. 19 - Prob. 19.150QPCh. 19 - Prob. 19.151QPCh. 19 - Prob. 19.152QPCh. 19 - An electrode is prepared by dipping a silver strip...Ch. 19 - An electrode is prepared from liquid mercury in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardA standard galvanic cell is constructed so that the overall cell reaction is 2A13++(aq)+3M(s)3M2+(aq)+2A1(s) Where M is an unknown metal. If G = 411 kJ for the overall cell reaction, identify the metal used to construct the standard cell.arrow_forwardOne of the few industrial-scale processes that produce organic compounds electrochemically is used by the Monsanto Company to produce1,4-dicyanobutane. The reduction reaction is 2CH2CHCH+2H++2eNC(CH2)4CN The NC(CH2)4CN is then chemically reduced using hydrogen gas to H2N(CH2)6NH2, which is used in the production of nylon. What current must be used to produce 150.kg NC(CH2)4CN per hour?arrow_forward
- Electrochemical Cells II Consider this cell running under standard conditions: Ni(s)Ni2(aq)Cu+(aq)Cu(s) a Is this cell a voltaic or an electrolytic cell? How do you know? b Does current flow in this cell spontaneously? c What is the maximum cell potential for this cell? d Say the cell is connected to a voltmeter. Describe what you might see for an initial voltage and what voltage changes, if any, you would observe as time went by. e What is the free energy of this cell when it is first constructed? f Does the free energy of the cell change over time as the cell runs? If so, how does it change?arrow_forwardDetermine the overall reaction and its standard cell potential at 25 C for this reaction. Is the reaction spontaneous at standard conditions? Cu(s)|Cu2+(aq)Au3+(aq)|Au(s)arrow_forwardConsider a galvanic cell based on the following half-reactions: a. What is the expected cell potential with all components in their standard states? b. What is the oxidizing agent in the overall cell reaction? c. What substances make up the anode compartment? d. In the standard cell, in which direction do the electrons flow? e. How many electrons are transferred per unit of cell reaction? f. If this cell is set up at 25C with [Fe2+] = 2.00 104 M and [La3+] = 3.00 103 M, what is the expected cell potential?arrow_forward
- Consider the following galvanic cell at 25C: Pt|Cr2+(0.30M),Cr3+(2.0M)||Co2+(0.20M)|Co The overall reaction and equilibrium constant value are 2Cr2+(aq)+Co2+(aq)2Cr3+(aq)+Co(s)K=2.79107 Calculate the cell potential, for this galvanic cell and G for the cell reaction at these conditions.arrow_forwardDetermine the overall reaction and its standard cell potential at 25 C for the reaction involving the galvanic cell made from a half-cell consisting of a silver electrode in 1 M silver nitrate solution and a half-cell consisting of a zinc electrode in 1 M zinc nitrate. Is the reaction spontaneous at standard conditions?arrow_forwardDetermine the overall reaction and its standard cell potential at 25 C for these reactions. Is the reaction spontaneous at standard conditions? Assume the standard reduction for Br2(l) is the same as for Br2(aq).. Pt(s)|H2(g)|H+(aq)Br2(aq),Br(aq)|Pt(s)arrow_forward
- A factory wants to produce 1.00 103 kg barium from the electrolysis of molten barium chloride. What current must be applied for 4.00 h to accomplish this?arrow_forwardConsider the following cell reaction at 25C. 2Cr(s)+3Fe2+(aq)2Cr3+(aq)+3Fe(s) Calculate the standard cell potential of this cell from the standard electrode potentials, and from this obtain G for the cell reaction. Use data in Appendix C to calculate H; note that Cr(H2O)63+(aq) equals Cr3+(aq). Use these values of H and G to obtain S for the cell reaction.arrow_forwardAn electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday Constant?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY