
a.
Find the amount of chemical in the lungs before breathing .
a.

Answer to Problem 14E
The amount of chemical in the lungs before breathingis
Explanation of Solution
Given :
It is given in the question that the the volume of the lungs is V , the amount breathed in and out is W and the ambient concentration is
Concept Used:
In this we have to use the concept ofa model of gas exchange in the lungs.
Calculation:
Initial concentration of chemical in lungs before breathing is;
= volume of lungs (V)
=
=
=
Conclusion:
b.
Find the amount of chemical breathed out.
b.

Answer to Problem 14E
The amount of chemical breathed out is
Explanation of Solution
Given :
It is given in the question that the the volume of the lungs is V , the amount breathed in and out is W and the ambient concentration is
Concept Used:
In this we have to use the concept ofa model of gas exchange in the lungs.
Calculation:
The amount of chemical breathed out is given by,
= the amount breathed out(W)
=
=
=
Conclusion:
c.
Find the amount of chemical in the lungs after breathing out .
c.

Answer to Problem 14E
The amount of chemical in the lungs after breathing out is
Explanation of Solution
Given :
It is given in the question that the the volume of the lungs is V , the amount breathed in and out is W and the ambient concentration is
Concept Used:
In this we have to use the concept ofa model of gas exchange in the lungs.
Calculation:
The amount of chemical in the lungs after breathing out is given by,
={the volume of the lungs(V) - the amount breathed out(W)}
Conclusion:
d.
Find the amount of chemical breathed in.
d.

Answer to Problem 14E
The amount of chemical breathed in is
Explanation of Solution
Given :
It is given in the question that the volume of the lungs is V , the amount breathed in and out is W and the ambient concentration is
Concept Used:
In this we have to use the concept ofa model of gas exchange in the lungs.
Calculation:
The amount of chemical in the lungs after breathing in is given by,
={the volume of the lungs(V)- the amount breathed in(W)}
Conclusion:
e.
Find the amount of chemical in the lungs after breathing in.
e.

Answer to Problem 14E
The amount of chemical in the lungs after breathing in is
Explanation of Solution
Given :
It is given in the question that the the volume of the lungs is V , the amount breathed in and out is W and the ambient concentration is
Concept Used:
In this we have to use the concept ofa model of gas exchange in the lungs.
Calculation:
The amount of chemical in the lungs after breathing in,
=[ {the volume of the lungs(V) - the amount breathed out(W) }
=
=
=
=
=
Conclusion:
f.
Find the concentration of chemical in the lungs after breathing in
f.

Answer to Problem 14E
The concentration of chemical in the lungs after breathing in is
Explanation of Solution
Given :
It is given in the question that the the volume of the lungs is V , the amount breathed in and out is W and the ambient concentration is
Concept Used:
In this we have to use the concept ofa model of gas exchange in the lungs.
Calculation:
The concentration of chemical in the lungs after breathing in= (total amount / total volume)
So, The amount of chemical in the lungs after breathing in,
=[ {the volume of the lungs(V)- the amount breathed out(W) }
=
=
=
And, we know that total volume of lungs is =
So, The concentration of chemical in the lungs after breathing in =
=
Conclusion:
g.
Compare this result with the result of using the general lungs discrete-time dynamical system (equation
g.

Answer to Problem 14E
The comparison is shown below and we easily compare it by seeing general lungs discrete − time system to the result.
Explanation of Solution
Given :
It is given in the question that the the volume of the lungs is V , the amount breathed in and out is W and the ambient concentration is
Concept Used:
In this we have to use the concept ofa model of gas exchange in the lungs.
Calculation :
step | In this question | In discrete-time dynamical |
a. The amount of chemical in the lungs before breathing | ||
b. The amount of chemical breathed out | ||
c. The amount of chemical in the lungs after breathing out | ||
d. The amount of chemical breathed in | ||
e. The amount of chemical in the lungs after breathing in | ||
f. The concentration of chemical in the lungs after breathing in |
Conclusion:
The comparison is shown above.
Want to see more full solutions like this?
Chapter 1 Solutions
Modeling the Dynamics of Life: Calculus and Probability for Life Scientists
- 2/2. prove that if G is Euler then so is L (G).arrow_forwardQ10. What are the chromatic numbers of the following two graphs? G H A. x(G) = 2 and x(H) = 2 B. x(G) = 2 and x(H) = 3 C. x(G) = 3 and x(H) = 2 D. X(G) = 3 and x(H) = 3 E. x(G) = 4 and x(H) = 3arrow_forwarda/Let G be agraph. Then X (6) > 3 if and only if G has an odd.arrow_forward
- Q/ Give an Such that L(G) example of a simple graph G is Euler but G is not.arrow_forwardAttempted the problem with different numbers but got a row of zeros and does not match the answer provided; even with the free variables. I dont know what I'm doing wrongarrow_forwardLet G be a graph with the following properties: G is simple, connected and planar. Every vertex of G has a degree of 4. Every face of G has three edges and every edge of G belongs to two faces. Does such a graph exist? If so, how many vertices, edges and faces does it have? (Hint: Turn each of the above property into an equation about the number of vertices, edges and/or faces of the graph.)arrow_forward
- You are provided with data that includes all 50 states of the United States. Your task is to draw a sample of: o 20 States using Random Sampling (2 points: 1 for random number generation; 1 for random sample) o 10 States using Systematic Sampling (4 points: 1 for random numbers generation; 1 for random sample different from the previous answer; 1 for correct K value calculation table; 1 for correct sample drawn by using systematic sampling) (For systematic sampling, do not use the original data directly. Instead, first randomize the data, and then use the randomized dataset to draw your sample. Furthermore, do not use the random list previously generated, instead, generate a new random sample for this part. For more details, please see the snapshot provided at the end.) Upload a Microsoft Excel file with two separate sheets. One sheet provides random sampling while the other provides systematic sampling. Excel snapshots that can help you in organizing columns are provided on the next…arrow_forwardThe University of the West Indies Open Campus ECON2016 Mathematical Methods of Economics II Final Assessment Instructions: Answer ALL the questions. Show all working 1. Solve the following Differential Equations a) dy = x²-1; y(-1) = 1 dx y²+1 dy b) d x + 2y = 3; dx c) dy-4y = 4y² dt d) 6dzy dx² dy -5+ y = 0; y(0) = 4 y'(0) = 0 dx [6] [5] [5] [6]arrow_forwardProblems Determine I, and Iy for the cross-sections 6.11 See the steel tables in the Appendix Table A3. |x= = " -2x8 STEEL PLATE CENTERED -W14x82arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning




