The solutions of the given discrete-time dynamical systems
The graph of the solutions and its comparison with the graph of updating function
Answer to Problem 18E
Explanation of Solution
Given:
The discrete- time dynamical system for volume:
The initial condition is
Calculation:
The subsequent values can be calculated by repeatedly applying the discrete-time dynamical system,
Hence, the values obtained are
After t times,
Hence, the solution to given discrete time dynamical system is
The graph of the solution can be drawn as
The graph of updating function can be drawn as
Want to see more full solutions like this?
Chapter 1 Solutions
Modeling the Dynamics of Life: Calculus and Probability for Life Scientists
- Firm Alpha operates in a perfectly competitive market in a constant-cost industry and is earning negative economic profit. a. How does Firm Alpha determine its profit-maximizing quantity of output? Explain. b. Draw correctly labeled side-by-side graphs for Firm Alpha and the market it operates in. Label the axes and all of the following: i. Market price (PE) and market quantity (QE) ii. The firm's quantity of output (Qe) iii. The firm's average total cost (ATC) c. Completely shade the area of the firm's total cost. d. Identify whether the following increase, decrease, or remain constant as the market moves to long-run equilibrium: i. Market equilibrium quantity ii. Market equilibrium price e. Assume the product that Firm Alpha produces has a negative externality. Draw the marginal social cost (MSC) on the market graph from part (b). f. Will the unregulated market produce more or less than the socially optimal quantity? g. Label the socially optimal quantity (Qso) for the market on your…arrow_forwardGoods A, B, and C are related goods, each operating in a perfectly competitive market. a. As the price of Good A increases from $8 to $10, its quantity demanded falls from 200 units to 160 units. Calculate the price elasticity of demand for this range. b. Good A is an input for Good B. Illustrate the effect of the price change from part (a) on a fully labeled supply and demand graph for Good B. Label the equilibrium price(s) and quantity or quantities. Use arrows to indicate any shifts. c. On your graph from (b), shade the consumer surplus lost in the market for Good B as a result of the change in part (a). d. The equilibrium price for Good C is $2, and the equilibrium quantity is 60 units. The cross-price elasticity of Good C with Good A is -3. i. Are Good C and Good A normal goods, inferior goods, complementary goods, or substitute goods? ii. Calculate the new equilibrium quantity of Good C after a 25% price increase for Good A.arrow_forwardPrice (S) The graph below depicts a firm with market power. In the graph, MC represents the firm's marginal costs, ATC represents the average total costs, D represents demand, and MR represents marginal revenue. 110 70 60 50 40 30 20 MC ATC D 0 40 50 70 80 95 Quantity/Units MR a. At 60 units of output, how much would this profit-maximizing monopolist charge? b. How many units would it produce to maximize total revenue rather than total profit? c. What is the maximum quantity this firm can produce without incurring economic losses? d. Calculate the firm's profit at the profit-maximizing output and price. e. Why is this firm's marginal revenue curve below its demand curve? Explain.arrow_forward
- Shade the areas givenarrow_forward1. Sketch the following sets and determine which are domains: (a) |z−2+i| ≤ 1; - (c) Imz> 1; (e) 0≤ arg z≤ л/4 (z ± 0); Ans. (b), (c) are domains. (b) |2z+3| > 4; (d) Im z = 1; - (f) | z − 4| ≥ |z.arrow_forwardSo let's see, the first one is the first one, and the second one is based on the first one!!arrow_forward
- 4. In each case, sketch the closure of the set: (a) -л 0.arrow_forward1. For each of the functions below, describe the domain of definition that is understood: 1 (a) f(z) = (b) f(z) = Arg z²+1 Z 1 (c) f(z) = (d) f(z) = 1 - | z | 2° Ans. (a) z±i; (b) Rez 0.arrow_forward44 4. Write the function f(x)=2+ ANALYTIC FUNCTIONS 1 (z = 0) Z. in the form f(z) = u(r, 0) + iv(r, 0). Ans. f(z) = = (1 + ² ) cos+ir i ( r — 1 ) sin 0. r CHAP. 2arrow_forward
- Given the (3-2-1) Euler angle set (10,20,30) degrees, find the equivalent (3-1-3) Euler angles. All the following Euler angle sets are 3-2-1 Euler angles. The B frame relative to N is given through the 3-2-1 EAs (10,20,30) degrees, while R relative to N is given by the EAs (-5,5,5) degrees. What is the attitude of B relative to R in terms of the 3-2-1 EAsarrow_forward3. Suppose that f(z) = x² − y² −2y+i (2x-2xy), where z = x+iy. Use the expressions (see Sec. 6) x = z┼え 2 Z - Z and y = 2i to write f(z) in terms of z, and simplify the result. Ans. f(z)²+2iz.arrow_forward10. Prove that a finite set of points Z1, Z2, Zn cannot have any accumulation points.arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL