
Study Guide with Student Solutions Manual for McMurry's Organic Chemistry, 9th
9th Edition
ISBN: 9781305082144
Author: John E. McMurry
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.SE, Problem 69GP
Interpretation Introduction
Interpretation:
Given that the enzyme chorismate mutase catalyzes a Claisen rearrangement of chorismate. The structure of prephenate obtained as the product is to be shown.
Concept introduction:
In Claisen rearrangement allyl phenyl ethers undergo rearrangement when heated to 200-250°C to yield an o-allylphenol. It is a case of (3, 3) sigmatrophic rearrangement.
To show:
The structure of prephenate obtained as the product obtained when chorismate undergoes Claisen rearrangement catalyzed by the enzyme chorismate mutase.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please can I have e mechanism for this equation, handwriting please
3. For the following reaction, what are the major product(s)
mechanism for this reaction
?
and draw the full
Br
Br
4. Show the product(s) for the following reaction if it proceeds via the S42 mechanism
AND if it proceeds via an Syt mechanism? Draw the mechanisms for both reactions
and show all resonance structures for any intermediates. Would you expect the Su
or Sy2 reaction to be favoured and why?
NGO
Chapter 18 Solutions
Study Guide with Student Solutions Manual for McMurry's Organic Chemistry, 9th
Ch. 18.1 - Name the following ethers:Ch. 18.2 - Why do you suppose only symmetrical ethers are...Ch. 18.2 - How would you prepare the following ethers using a...Ch. 18.2 - Review the mechanism of oxymercuration shown in...Ch. 18.2 - How would you prepare the following ethers? Use...Ch. 18.2 - Prob. 6PCh. 18.3 - Prob. 7PCh. 18.3 - Write the mechanism of the acid-induced cleavage...Ch. 18.3 - Why are HI and HBr more effective than HCl in...Ch. 18.4 - What product would you expect from Claisen...
Ch. 18.5 - Prob. 11PCh. 18.6 - Predict the major product of each of the following...Ch. 18.6 - Prob. 13PCh. 18.6 - Predict the major product of the following...Ch. 18.7 - 15-Crown-5 and 12-crown-4 ethers complex Na+ and...Ch. 18.8 - Prob. 16PCh. 18.8 - 2-Butene-l-thiol is one component of skunk spray....Ch. 18.9 - The 1H NMR spectrum shown is that of a cyclic...Ch. 18.SE - Give IUPAC names for the following compounds...Ch. 18.SE - Show the product, including stereochemistry, that...Ch. 18.SE - Prob. 21VCCh. 18.SE - Treatment of the following alkene with a...Ch. 18.SE - Prob. 23MPCh. 18.SE - Prob. 24MPCh. 18.SE - Predict the product(s) and provide the mechanism...Ch. 18.SE - The alkoxymercuration of alkenes involves the...Ch. 18.SE - Predict the product(s) and provide the mechanism...Ch. 18.SE - Predict the product(s) and provide the mechanism...Ch. 18.SE - Prob. 29MPCh. 18.SE - Ethers undergo an acid-catalyzed cleavage reaction...Ch. 18.SE - Treatment of 1, 1-diphenyl-l, 2-epoxyethane with...Ch. 18.SE - Fluoxetine, a heavily prescribed antidepressant...Ch. 18.SE - When 2-methyl-2, 5-pentanediol is treated with...Ch. 18.SE - Prob. 34MPCh. 18.SE - Prob. 35MPCh. 18.SE - Aldehydes and ketones undergo acid-catalyzed...Ch. 18.SE - Propose a mechanism to account for the following...Ch. 18.SE - Prob. 38APCh. 18.SE - Prob. 39APCh. 18.SE - How would you prepare the following ethers?Ch. 18.SE - Prob. 41APCh. 18.SE - tert-Butyl ethers can be prepared by the reaction...Ch. 18.SE - Treatment of trans-2-chlorocyclohexanol with NaOH...Ch. 18.SE - Predict the products of the following ether...Ch. 18.SE - Prob. 45APCh. 18.SE - Prob. 46APCh. 18.SE - Write the mechanism of the hydrolysis of cis-5,...Ch. 18.SE - Prob. 48APCh. 18.SE - Acid-catalyzed hydrolysis of a 1,...Ch. 18.SE - Prob. 50APCh. 18.SE - Epoxides are reduced by treatment with lithium...Ch. 18.SE - Prob. 52APCh. 18.SE - The red fox (Vulpes vulpes) uses a chemical...Ch. 18.SE - Anethole, C10H12O, a major constituent of the oil...Ch. 18.SE - Propose structures for compounds that have the...Ch. 18.SE - Prob. 56GPCh. 18.SE - How would you synthesize anethole (Problem 18-54)...Ch. 18.SE - How could you prepare benzyl phenyl ether from...Ch. 18.SE - Meerwein's reagent, triethyloxonium...Ch. 18.SE - Prob. 60GPCh. 18.SE - Prob. 61GPCh. 18.SE - The Zeisel method is an old analytical procedure...Ch. 18.SE - Prob. 63GPCh. 18.SE - Prob. 64GPCh. 18.SE - Prob. 65GPCh. 18.SE - Identify the reagents a-e in the following scheme:Ch. 18.SE - Propose structures for compounds that have the...Ch. 18.SE - Prob. 68GPCh. 18.SE - Prob. 69GPCh. 18.SE - Predict the product(s) if the starting materials...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- I have a question here so in essence were just comparing the electronegativity values that are being given, soC and Cl, C and O, C and H to determine the partially positive, partially negative charges? So option I: Cl and C, option 2 O and C, option III C on its own correct?arrow_forwardDraw the less stable chair conformation of myo-inositol clearly indicating the axial and equatorial substituents as well as the cis and trans relationships of at least 3 OH groups. Draw a viable Newman Projection using any carbon carbon bond clearly showing a gauche interaction between the substituents.arrow_forward5. What is the product for the following reaction for each step and draw the mechanism H 1. NaNH2 2, EtBrarrow_forward
- mical lation or mula trations, AAAAAAAAAAAAA Experiment #8 Electrical conductivity & Electrolytes Conductivity of solutions FLINN Scientific conductivity meter scale - RED LED Scale 0 Green LED OFF OFF 1 Dim OFF 2 medium OFF Bright Dim 4 Very Bright Medium 3 LED Conductivity Low or None' Low Medium High very high SE = Strong Electrolyte, FE = Fair Electrolyte WE Weak Electrolyte, NE= Noni Electrolyte 9 0.1 M NaOH. 10. 0.1M NH3 11. D.1M HCT 12. 0.1 M HC2H3D2 13 0 m H2SO4 Prediction observed conductivity ? Very bright red, dim green (4) ? Saturated Bright red, dim green 3 Cacal) Bright red, dim green 3 Prediction Bright red, No green ? observed Bright red,dim green ? Conductivity Just red? I Can you help me understand how I'm supposed to find the predictions of the following solutions? I know this is an Ionic compound and that the more ions in a solution means it is able to carry a charge, right? AAAAAA The light are not matching up with the scale So I'm confused about what I should be…arrow_forwardLabel these peaks in H- NMR and C- NMRarrow_forwardComplete the following table. The only density needed is already given. Show your calculations in a neat and easy-to-follow manner in the space below the table. All units should be included and significant figures should be given close attention. Be sure to notice that the amount of material should be in millimoles rather than moles, and the theoretical mass of the product should in milligrams rather than grams. LOCH 3 + H2SO4 HNO 3 O=C-OCH 3 NO2 x H₂O F.W. 4.0 mL 1.3 M amount 0.50 mL in H2SO4 mg Theoretical Theoretical mmoles density 1.09arrow_forward
- Kumada Coupling: 1. m-Diisobutylbenzene below could hypothetically be synthesized by Friedel-Crafts reaction. Write out the reaction with a mechanism and give two reasons why you would NOT get the desired product. Draw the reaction (NOT a mechanism) for a Kumada coupling to produce the molecule above from m-dichlorobenzene. Calculate the theoretical yield for the reaction in question 2 using 1.5 g of p-dichlorobenzene and 3.0 mL isobutyl bromide. What signals appeared/disappeared/shifted that indicate that you have your intended product and not starting material? What other impurities are present in your product and how do you know?arrow_forwardWintergreen from Aspirin: 1. In isolating the salicylic acid, why is it important to press out as much of the water as possible? 2. Write the mechanism of the esterification reaction you did. 3. What characteristic absorption band changes would you expect in the IR spectrum on going from aspirin to salicyclic acid and then to methyl salicylate as you did in the experiment today? Give approximate wavenumbers associated with each functional group change. What signals appeared/disappeared/shifted that indicate that you have your intended product and not starting material? What other impurities are present in your product and how do you know?arrow_forwardSynthesis of ZybanⓇ: 1. Write a mechanism for the bromination of m-chloropropiophenone. Br₂ CH2Cl2 Cl Br 2. Give the expected m/z (to a round number) for the molecular ion from the product above (including isotopic peaks). 3. What signals appeared/disappeared/shifted that indicate that you have your intended product and not starting material? What other impurities are present in your product and how do you know?arrow_forward
- Synthesis of Ibuprofen-Part 2: 1. Some pain relievers including ibuprofen (MotrinⓇ) and naproxen (Aleve®) are "α-arylpropanoic acids." Look up the structure of naproxen (AleveⓇ), another a-arylpropionic acid. Using the same reactions that we used for making ibuprofen, show how to make naproxen from the compound below. Show all intermediates and reagents in your synthesis. Show how you would prepare ibuprofen starting from p-isobutylbenzene rather than p-isobutylacetophenenone. What reaction steps would need to change/add? 3. What signals appeared/disappeared/shifted that indicate that you have your intended product and not starting material? What other impurities are present in your product and how do you know?arrow_forwardAcid Catalyzed Aromatization of Carvone: 1. Starting with the ketone, below, draw a mechanism for the reaction to give the phenol as shown. H2SO4 HO- H₂O 2. Why do we use CDCl instead of CHCl, for acquiring our NMR spectra? 3. Why does it not matter which enantiomer of carvone is used for this reaction? What signals appeared/disappeared/shifted that indicate that you have your intended product and not starting material? What other impurities are present in your product and how do you know?arrow_forwardAssign this H NMRarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning


Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning

Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning

Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Characteristic Reactions of Benzene and Phenols; Author: Linda Hanson;https://www.youtube.com/watch?v=tjEqEjDd87E;License: Standard YouTube License, CC-BY
An Overview of Aldehydes and Ketones: Crash Course Organic Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=-fBPX-4kFlw;License: Standard Youtube License