Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18.5, Problem 63P
The system consists of 60-lb and 20-lb blocks A and B , respectively, and 5-lb pulleys C and D that can be treated as thin disks Determine the speed of block A after block B has risen 5 ft, starting from rest. Assume that the cord does not slip on the pulleys, and neglect the mass of the cord.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 6. The circular plate shown rotates about its vertical diameter. At the instant shown, the
angular velocity ₁ of the plate is 10 rad/s and is decreasing at the rate of 25 rad/s². The disk lies
in the XY plane and Point D of strap CD moves upward. The relative speed u of Point D of strap
CD is 1.5 m/s and is decreasing at the rate of 3 m/s².
Determine (a) the velocity of D, (b) the acceleration of D.
Answers: =0.75 +1.299]-1.732k m/s a=-28.6 +3.03-10.67k m/s²
200 mm
x
Z
Problem 1. The flywheel A has an angular velocity o 5 rad/s. Link AB is connected via ball
and socket joints to the flywheel at A and a slider at B. Find the angular velocity of link AB and
the velocity of slider B at this instant. (Partial Answer: @ABN = -2î + 2.25; red
Z
-1.2 ft
C
-7 Y
-1.5 ft-
B
2.0 ft
Need help please
Chapter 18 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 18.4 - Determine the kinetic energy of the 100-kg object.Ch. 18.4 - The 80-kg wheel has a radius of gyration about its...Ch. 18.4 - If the rod is at rest when = 0, determine its...Ch. 18.4 - Determine the angular velocity of the rod when the...Ch. 18.4 - If the wheel starts from rest and rolls Without...Ch. 18.4 - If the uniform 30-kg slender rod starts from rest...Ch. 18.4 - When it is subjected to a couple moment of M = 50...Ch. 18.4 - Show that its kinetic energy can be represented a...Ch. 18.4 - If the torsional spring attached to the wheel's...Ch. 18.4 - If the torsional spring attached to the wheel's...
Ch. 18.4 - Determine the angular velocity of the reel after...Ch. 18.4 - Determine the angular velocity of the reel after...Ch. 18.4 - Determine the angular velocity of the reel after...Ch. 18.4 - It has a weight of 50 lb and a centroidal radius...Ch. 18.4 - It has a weight of 50 lb and a centro1dal radius...Ch. 18.4 - If it starts from rest, determine its angular...Ch. 18.4 - If the 10-kg block is released from rest,...Ch. 18.4 - Determine the angular velocity of the 20-kg wheel...Ch. 18.4 - Initially, the system is at rest. The reel has a...Ch. 18.4 - The force is always perpendicular to the rod.Ch. 18.4 - Determine the angular velocity of the rod when it...Ch. 18.4 - If it is released from rest in the position shown,...Ch. 18.4 - If the elevator has a mass of 900 kg, the...Ch. 18.4 - If the ring rolls without slipping, determine its...Ch. 18.4 - A motor supplies a torque M = (40 + 900) Nm ,...Ch. 18.4 - When empty it has a mass of 800 kg and a radius of...Ch. 18.4 - If P = 200 N and the 15-kg uniform slender rod...Ch. 18.4 - If it is released from rest, determine how far it...Ch. 18.4 - The windlass A can be considered as a 30-lb...Ch. 18.4 - If the conveyor belt is moving with a speed of Vc...Ch. 18.4 - A couple moment of M = 80 Nm is then applied to...Ch. 18.4 - A couple moment M = 80 Nm is then applied to the...Ch. 18.4 - If the plate is released from rest at = 90,...Ch. 18.4 - If the ring gear C is fixed, determine the angular...Ch. 18.4 - If the rod is released from rest when the spring...Ch. 18.4 - Determine the speed of the sptere's center of mass...Ch. 18.4 - Motor M exerts a constant force of P = 750 Non the...Ch. 18.4 - When = 0, rod AB is rotating with an angular...Ch. 18.4 - If rod CD is subjected to a couple moment M = 30...Ch. 18.4 - The gears roll within the fixed ring gear C, which...Ch. 18.4 - When = 0, rod AB is rotating with an angular...Ch. 18.4 - When = 0, rod AB is rotating with an angular...Ch. 18.5 - If the 30-kg disk is released from rest when = 0...Ch. 18.5 - If it is released from rest, determine its angular...Ch. 18.5 - Determine its angular velocity when = 45.The...Ch. 18.5 - Determine the angular velocity of the rod when =...Ch. 18.5 - Determine the angular velocity of the rod when =...Ch. 18.5 - Determine its angular velocity when = 90. The...Ch. 18.5 - If a 2-kg block is suspended from the cord,...Ch. 18.5 - Prob. 37PCh. 18.5 - If it is released from rest at A on the incline,...Ch. 18.5 - The spool has a mass of 20 kg and a radius of...Ch. 18.5 - If the 15-kg block A is released from rest,...Ch. 18.5 - If it is allowed to fall freely determine the...Ch. 18.5 - Gear A has a mass of 10kg and a radius of gyration...Ch. 18.5 - If the rod is released from rest when = 30,...Ch. 18.5 - If the rod is released from rest when = 30,...Ch. 18.5 - The 40-kg wheel has a radius of gyration about its...Ch. 18.5 - If the bars are released from rest when = 60,...Ch. 18.5 - If the bars are released from rest when = 60,...Ch. 18.5 - If it has a mass of 3 kg and a rad1us of gyration...Ch. 18.5 - Lifting is done using the two springs, each of...Ch. 18.5 - If the spring has an unstretched length of 1.5 m,...Ch. 18.5 - If the spring has an unstretched length of 1.5 m,...Ch. 18.5 - The drum has a weight of 50 lb and a radius of...Ch. 18.5 - If the track in which it moves is smooth,...Ch. 18.5 - The pulley has a weight of 50 lb and a rad1us of...Ch. 18.5 - The gear has a weight of 100 lb and a radius of...Ch. 18.5 - Determine the stiffness k of the spring so that...Ch. 18.5 - The slender 6-kg bar AB is horizontal and at rest...Ch. 18.5 - If the spring has an unstretched length of 0.2 m,...Ch. 18.5 - The 500-g rod AB rests along the smooth inner...Ch. 18.5 - The 50-lb wheel has a radius of gyration about its...Ch. 18.5 - The system consists of 60-lb and 20-lb blocks A...Ch. 18.5 - The door is made from one piece, whose ends move...Ch. 18.5 - The door is made from one piece, whose ends move...Ch. 18.5 - The end A of the garage door AB travels along the...Ch. 18.5 - The system consists of a 30-kg disk, 12-kg slender...Ch. 18.5 - The system consists of a 30-kg disk A, 12-kg...Ch. 18.5 - If it is released from rest when = 0, determine...Ch. 18.5 - If it is subjected to a torque of M = (91/2+ 1)...Ch. 18.5 - Starting from rest, the suspended 15-kg block B is...Ch. 18.5 - If it is released from rest, determine how far its...Ch. 18.5 - If the rack is originally moving downward at 2...Ch. 18.5 - The spring attached to its end always remains...Ch. 18.5 - If the disk rolls without slipping, determine the...Ch. 18.5 - At the instant the spring becomes undeformed, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- PROBLEM 15.225 The bent rod shown rotates at the constant rate @₁ = 5 rad/s and collar C moves toward point B at a constant relative speed u = 39 in./s. Knowing that collar C is halfway between points B and D at the instant shown, determine its velocity and acceleration. Answers: v=-45 +36.6)-31.2 k in./s āc = -2911-270} in./s² 6 in 20.8 in. 14.4 in.arrow_forwardNeed help, please show all work, steps, units and please box out and round answers to 3 significant figures. Thank you!..arrow_forwardNeed help, please show all work, steps, units and please box out and round answers to 3 significant figures. Thank you!...arrow_forward
- FL y b C Z Determine the moment about O due to the force F shown, the magnitude of the force F = 76.0 lbs. Note: Pay attention to the axis. Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 1.90 ft b 2.80 ft с 2.60 ft d 2.30 ft Mo 144 ft-lb = -212 × 1 + xk) ☑+212arrow_forward20 in. PROBLEM 15.206 Rod AB is connected by ball-and-socket joints to collar A and to the 16-in.-diameter disk C. Knowing that disk C rotates counterclockwise at the constant rate ₁ =3 rad/s in the zx plane, determine the velocity of collar A for the position shown. 25 in. B 8 in. Answer: -30 in/s =arrow_forwardB Z 001 2.5 ft PROBLEM 15.236 The arm AB of length 16 ft is used to provide an elevated platform for construction workers. In the position shown, arm AB is being raised at the constant rate de/dt = 0.25 rad/s; simultaneously, the unit is being rotated about the Y axis at the constant rate ₁ =0.15 rad/s. Knowing that 20°, determine the velocity and acceleration of Point B. Answers: 1.371 +3.76)+1.88k ft/s a=1.22 -0.342)-0.410k ft/s² Xarrow_forward
- F1 3 5 4 P F2 F2 Ꮎ Ꮎ b P 3 4 5 F1 The electric pole is subject to the forces shown. Force F1 245 N and force F2 = 310 N with an angle = 20.2°. Determine the moment about point P of all forces. Take counterclockwise moments to be positive. = Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 2.50 m b 11.3 m C 13.0 m The moment about point P is 3,414 m. × N- If the moment about point P sums up to be zero. Determine the distance c while all other values remained the same. 1.26 m.arrow_forwardZ 0.2 m B PROBLEM 15.224 Rod AB is welded to the 0.3-m-radius plate, which rotates at the constant rate ₁ = 6 rad/s. Knowing that collar D moves toward end B of the rod at a constant speed u = 1.3 m, determine, for the position shown, (a) the velocity of D, (b) the acceleration of D. Answers: 1.2 +0.5-1.2k m/s a=-7.21-14.4k m/s² A 0.25 m 0.3 marrow_forwardI am trying to code in MATLAB the equations of motion for malankovich orbitlal elements. But, I am having a problem with the B matrix. Since f matrix is 7x1 and a_d matrix has to be 3x1, the B matrix has to be 7x3. I don't know how that is possible. Can you break down the B matrix for me and let me know what size it is?arrow_forward
- I am trying to code the solution to the problem in the image in MATLAB. I wanted to know what is the milankovich constraint equation that is talked about in part b.arrow_forwardmylabmastering.pearson.com Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... P Pearson MyLab and Mastering Scoresarrow_forwardAir modeled as an ideal gas enters an insulated compressor at a temperature of 300 K and 100 kPa, and leaves at 600 kPa. The mass flowrate of air entering the compressor is 50 kg/hr, and the power consumed by the compressor is 3 kW. (Rair = 0.287 kJ/kg-K, k = 1.4, cp = 1.0045 kJ/kg-K, cv = 0.718 kJ/kg-K) Determine the isentropic exit temperature (Te,s) of the air in [K]. Determine the actual exit temperature (Te) of the air in [K]. Determine the isentropic efficiency of the compressor. (Answer: ηc,s = 93.3%) Determine the rate of entropy generated through the compressor in [kW/K]. (Answer: Ṡgen = 0.000397 kW/K)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license