Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.3, Problem 18.120P
(a)
To determine
To show that the expression of rate of precession for an axisymmetric body under no force.
(b)
To determine
To check the condition for steady precession is satisfied by an axisymmetric body under no force.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a cylinder of radius R = 0.6 m and radius of gyration k = 0.33 m rolling (without slipping)
down an inclined plane. The plane makes an angle of ø = 10 deg with the horizontal plane. How long
(in seconds) will it take for the center of cylinder to travel a distance of 1.3 m.
cord]
w = 2.2 rad/s 5
x = 604 rad(5²5 (constant)
1.5 m
has
A disk is
to a fixed axis of rotation through its center as shown,
and a cord wraps around it, and attaches to a block. Assuming that
the disk's initial angular velocity is w = 2.2 rad/s CCW, and that
its angular acceleration is α = 6₁4 rad /s² cew (and that x is constant),""
fined
(a) the acceleration of the block (mag and direc)
(b), the velocity of the block after 2.8s (mag and direc)
(c) the distance traveled by the block during that time
1.
There are four masses connected to a rotor that rotates in bearings at both ends.
These four masses are lying at the radii of 90, 115. 190, and 140 mm respectively from the axis
of rotation, and the planes in which these masses rotate are spaced 0.8 meters apart. The
magnitudes of 03 masses are gives as: m¡ = 12 Kg, m, = 7 Kg, m, = 5 Kg. Find the value
of the mass m, and the relative angular settings for the shaft to be in complete balance.
Chapter 18 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 18.1 - A thin, homogeneous disk of mass m and radius r...Ch. 18.1 - Prob. 18.2PCh. 18.1 - 18.3 Two uniform rods AB and CE, each of weight 3...Ch. 18.1 - A homogeneous disk of weight W = 6 lb rotates at...Ch. 18.1 - Prob. 18.5PCh. 18.1 - A solid rectangular parallelepiped of mass m has a...Ch. 18.1 - Prob. 18.8PCh. 18.1 - Determine the angular momentum HD of the disk of...Ch. 18.1 - Prob. 18.10PCh. 18.1 - Prob. 18.11P
Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Prob. 18.43PCh. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Prob. 18.57PCh. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - 18.61 Determine the rate of change of the angular...Ch. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - Prob. 18.157RPCh. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The following figure shows a top view of a spinning, cylindrical gyroscope wheel. The pivot is at 0, and the mass of the axle is negligible. Use r = 1.6 cm and R = 3 cm. r 下 Pivot Top view a) (a) As seen from above, is the precession clockwise or counterclockwise? Counterclockwise Clockwise b) If the gyroscope precesses at 0.2 revolution per second, what is the angular speed of the wheel in revolution per minute? Insert your answer correct up to at least a third decimal place.arrow_forwardI need the answer as soon as possiblearrow_forwardA, B, C and D are four masses carried by a rotating shaft, the masses and eccentricity at B and C are (20 kg, 15 kg) and (150 mm, 140mm) respectively. The masses at A and D have an eccentricity of 170 mm. The angle between the masses at B and C is 90° and that between the masses at B and A is 200°, both being measured in the same direction. The planes containing masses A and B are 300 mm apart and that between B and C are 400 mm. If the shaft is in complete dynamic balance, determine : 1. The magnitude of the masses at A and D; 2. The distance between planes A and D ; and 3. The angular position of the mass at Darrow_forward
- A disk rotates about an axis through its center. Point A is located on its rim and point B is located exactly one third of the way from the center toward the rim. What is the ratio of the angular velocity wa to that of wB, and the tangential velocity VA to that of VB? (a) the angular velocity wA to that of B = WA = WB (b) the tangential velocity VÀ to that of VB VA VBarrow_forward3 The object below can rotate in the plane of the page about a fixed axis at A. The object is symmetric about A in the vertical and horizontal directions. A time=0, the object is rotating counterclockwise at 5 rad/s. The material has a uniform area density of 120 kg/m². a. What is the mass moment of inertia of the object about Point A? b. The net moment applied about Point A is shown on the graph. What is the angular velocity, w₁5, of the object at t-15 seconds? MA [Nm] 16 0.15 m 120 kg/m² 0.3 m H wo = 5 rad/s A 0.8 m 0.3 m 0.6 m 0 -8 0.15 m 10 15 time [s]arrow_forwardA solid steel disc is made of two thin concentric discs with the same thickness, t. as shown. The disc can rotate freely about the perpendicular axis through its centre of mass. It is subject to a torque T = 5 Nm. The parameters are as follows: Density of steel = 7860 Kg/m³ Diameter D1 = 0.3 m Diameter D2 = 0.5 m Thickness t = 0.05 m t D1 D2 Calculate the angular acceleration of the disc. Give your answer in rad/s² to 2 decimal places.arrow_forward
- As shown, a 2.7-lblb ball is suspended at point D inside a box with dimensions w=8.90 ft, ft, d=6.50ft . The ball is held in place by three cables anchored at points A, B, and C on the surface of the box. point D is the origin of the Cartesian coordinate system, point A is located at (−4.60,−3.60,2.80)ft, point B is located at (1.90,−3.60,1.90) ft, and point C is located at (1.90,5.30,−1.70) ft. 1.The tension in cable DA has a magnitude of TDA lb. Find the Cartesian components of tension TDA , which is directed from D to A. 2.If the tensions in cables DA and DB are TDA =7.23 lb and TDB =5.20 lb, respectively, what is the tension in cable DC?arrow_forwardQ3 A uniform sphere of 150 mm diameter has a mass of 5 kg. It is mounted centrally in bearings which maintain its axle in a horizontal plane. The sphere spins about its axle with a constant speed of 1000 r.p.m. while the axle precesses uniformly about the vertical at 60 r.p.m. The directions of rotation are as shown in Figure below. If the distance between the bearings is 100 mm, find the resultant reaction at each bearing due to the mass and gyroscopic effects. (35 degrees)arrow_forwardAs shown in Figure 5, disk A is free to spin about the bar B, which is perpendicular to the disk and rotates anti-clockwise with a constant angular velocity w, = 1 rad/s about z-axis. The length of bar B is L = 2/3 m, and the radius of the disk R = 2 m. Assume that the disk spins without slipping on the surface. 1) Determine the absolute angular velocity of the disk aa: 2) Determine the absolute angular acceleration of the disk a4; 3) Determine the velocity and acceleration of point P on the disk. Vp, ap Pi L R 0 = 30° Figure 5.arrow_forward
- A disc with a radius of 0.53 m is fixed to rotate about its center. Three forces act on the object as noted below. What magnitude net torque acts on the object? F1 = 14.7 N tangentially applied to the outer edge. F2 = 11.1 N tangentially applied to the outer edge. F3 = 11.5 N tangentially applied at a distance 0 m above the axis of rotation at an angle theta = 34.3 degrees with respect to the vertical. The location of F3 is at the center of the circle (a distance of 0 from the axis)arrow_forwardA wheel is mounted on a steel shaft (G = 83×10° N/m²) of length (1.5 m) and radius (0.80 cm). The wheel is rotated (5°) and released. The period of oscillation is observed as (2.3 s). Determine the mass moment of inertia of the wheel. LU 1.5 m 0 (1) G= 83 x 10' N/m² r = 8 mm Fig (5)arrow_forwardProblem 4.11 For the motion given by the equations X₁ x2 = -X₁ sin wt + X₂ cos wt 9 x3 = (1 + kt)X3, where w and k are constants, determine the displacement field in Eulerian form. = X₁ cos wt + X₂ sin wt,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY