Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 18.155RP
(a)
To determine
The precession axis of the satellite.
(b)
To determine
The rate
(c)
To determine
The rate
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A composite pendulum is made of a uniform slender rod and a uniform disk. If the
rod has length of 1.1 m and mass of 12.2 kg, and the disk has radius of 0.35 m and
mass of 9.7 kg, determine the mass moment of inertia (in kg • m) about the
centroidal x axis that passes through its center of gravity (seen from the profile
view). Please pay attention: the numbers may change since they are randomized.
Your answer must include 2 places after the decimal point.
y
G
G
R
Profile view
Your Answer:
Answer
The figure shows composite shape comprising of two long slender rod bodies. The horizontal body has a length of 1.2m and mass 3kg; the second body has a length 0.4m and mass 1kg. The centre of gravity of each of the individual bodies can be
found at their geometric centre, labelled G₁ and G2₂ in the figure.
The composite shape has symmetry about the x axis, thus its centre of gravity lies on the line 'y=0' as depicted in the figure. Calculate the x coordinate of the centre of gravity of the composite shape.
O
O
0.95 m
0.75 m
0.50 m
Don't Know
0.60 m
G₁
G₂
A yoyo is constructed by attaching three uniform, solid disks along their central axes as shown. The two outer disks are identical, each with mass M = 58 g, radius R = 3.3 cm, and moment of inertia 1/2MR2. The central, smaller disk has mass M/2 and radius R/2. A light, flexible string of negligible mass is wrapped counterclockwise around the central disk of the yoyo. The yoyo is then placed on a horizontal tabletop and the string is gently pulled with a constant force F = 0.25 N. The tension in the string is not sufficient to cause the yoyo to leave the tabletop. In this problem consider the two cases show. In Case 1 the string is pulled straight up, perpendicular to the tabletop. In Case 2 the string is pulled horizontally, parallel to the tabletop. In both cases the yoyo rolls without slipping.
In both the cases shown what is the magnitude of the tourqe t excerted by the string about the contact point of the yo-yo wiith the table in N*m.
What is the moment of intertia of the yo-yo…
Chapter 18 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 18.1 - A thin, homogeneous disk of mass m and radius r...Ch. 18.1 - Prob. 18.2PCh. 18.1 - 18.3 Two uniform rods AB and CE, each of weight 3...Ch. 18.1 - A homogeneous disk of weight W = 6 lb rotates at...Ch. 18.1 - Prob. 18.5PCh. 18.1 - A solid rectangular parallelepiped of mass m has a...Ch. 18.1 - Prob. 18.8PCh. 18.1 - Determine the angular momentum HD of the disk of...Ch. 18.1 - Prob. 18.10PCh. 18.1 - Prob. 18.11P
Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Prob. 18.43PCh. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Prob. 18.57PCh. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - 18.61 Determine the rate of change of the angular...Ch. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - Prob. 18.157RPCh. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The centroidal mass moment of inertia ofthe pulley assembly is 20 ft-lb-s2. Determine (a) the tension in the cordsupporting 161-lb block , (b)the tension supporting the 322-lb block, and (c) the angularacceleration of the pulley system .Hint: Determine first the direction ofmotion, i.e. will block A move up ordown?arrow_forwardAt the instant shown, the uniform slender rod with mass m = 33 kg is pin-supported at point O. It has dimensions a = 0.22 m and b = 0.49 m. Determine its mass moment of inertia / (in kg.m²) about the axis that passes point O and is perpendicular to the screen. Please pay attention: the numbers may change since they are randomized. Your answer must include 3 places after the decimal point. a Your Answer: Answer M barrow_forwardThe body and bucket of a skid steer loader has a weight of 1990 lb, and its center of gravity is located at G. Each of the four wheels has a weight of 95 lb and a radius of gyration about its center of gravity of 1 ft.( Figure 1) Figure 1.25 ft G1.25 ft 2 ft 1 ft Part A If the engine supplies a torque of M = 90 lb-ft to each of the rear drive wheels, determine the speed of the loader in t = 10 s starting from rest. The wheels roll without slipping. Express your answer with the appropriate units. v= Value Submit μA Provide Feedback Request Answer Units Review ? Next >arrow_forward
- Three balls are attached to a cable and are being rotated. Ball A is 0.5 kg and is 1.0 m away from the axis of rotation. Ball B is 1.0 kg and placed 0.8 m away from the axis. Ball C, which is 0.5 m away from he axis, is 1.2 kg. Calculate the total moment of inertia of the balls.arrow_forwardLocate the instant center of rotation of bar AB for each case shown.arrow_forwardCalculate the mass moment of inertia for a rectangular plate for the H-H axis shown in the link. The mass of the plate is 8 kg, a = 5 m and b = 1 m. (Please solve this problem asap)arrow_forward
- Calculate the mass moment of inertia for a rectangular plate for the H-H axis shown in the link. The mass of the plate is 8 kg, a = 5 m and b = 1 m.arrow_forwardThe passengers, the ship and the structure have a total mass of 73 Tons, their center of mass in G, and a radius of gyration with respect to B of kB = 3.5 m. Additionally, the 3-ton steel block at point A can be considered as a point of concentrated mass. If the ship rotates freely at 9.3 rad/s when it reaches the lowest point, as shown in the figure, determine the moment of inertia of the system about pivot B (in kgm2) The angular acceleration for the position shown (in rad/s2) is: The vertical reaction at pivot B (in N) is: The horizontal reaction at pivot B (in N) is:arrow_forward8. A 3.6 m long shaft carries three pulleys, two at its two ends and third at the mid-point. The two end pulleys has mass of 79 kg and 40 kg and their centre of gravity are 3 mm and 5 mm respectively from the axis of the shaft. The middle pulley mass is 50 kg and its centre of gravity is 8 mm from the shaft axis. The pulleys are so keyed to the shaft that the assembly is in static balance. The shaft rotates at 300 r.p.m. in two bearings 2.4m apart with equal overhang on either side. Determine : 1. the relative angular positions of the pulleys, and 2. dynamic reactions at the two bearings.arrow_forward
- The pendulum can rotate about the axis perpendicular to page and pass through point A. The solid rod has a mass is 4 kg and the solid sphere with radius of 500 mm has a mass of 7 kg. Calculate the mass moment of inertia of the rod and the sphere when the axis perpendicular to the page 5 marrow_forwardFind the equivalent mass (equation) if it were placed at point B.arrow_forwardA small connecting rod 220 mm long between centres, is of 2 kg mass and has a moment of inertia of 2*10^ 4 kg-mm . about its centre of gravity. Centre of gravity is located at a distance of 150 mm from the small end centre. Determine dynamically equivalent two masses, when one mass is located at the small end centre. What is the location of the second mass?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY