Vector Mechanics for Engineers: Statics and Dynamics
Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 18, Problem 18.153RP
To determine

The dynamic reaction at D (D) and E (E).

Expert Solution & Answer
Check Mark

Answer to Problem 18.153RP

The dynamic reaction at D (D) and E (E) are (7.12lb)j+(4.47lb)k_ and (1.822lb)j+(4.47lb)k_ respectively.

Explanation of Solution

Given Information:

The weight of the disk (W) is 6 lb.

The constant angular velocity (ω1) with respect to arm ABC is 16rad/s.

The constant angular velocity (ω1) with respect to shaft DCE is 8rad/s.

The radius (r) of the disk is 8in..

The length (l) of the rod is 12in..

The length of the rod from disk to point B (b) and B to C (c) is 9in..

Assume the acceleration due to gravity (g) as 32.2ft/s2.

Calculation:

Write the expression for the angular velocity (Ω) of the shaft DE and arm CBA:

Ω=ω2i

Write the expression for the angular velocity (ω):

ω=ω2i+ω1j

Write the expression the centroidal moment of inertia (I¯x) of disk about x axis:

I¯x=14mr2

Write the expression the centroidal moment of inertia (I¯y) of disk about y axis:

I¯y=12mr2

Write the express the angular moment(HA) about its mass centre A:

HA=I¯xωxi+I¯yωyj+I¯zωzk=I¯xω2i+I¯yω1j

Substitute 14mr2 for I¯x and 12mr2 for I¯y.

HA=14mr2ω2i+12mr2ω1j

Let the reference frame Oxyz be rotating with angular velocity (Ω) as below:

Ω=ω2i

Write the express the angular momentum (H˙A)Oxyzof the reference frame Oxyz.

(H˙A)Oxyz=I¯xω˙2i+I¯yω˙1j

Substitute 14mr2 for Ix and 12mr2 for Iy.

(H˙A)Oxyz=14mr2ω˙2i+12mr2ω˙1j

Write the express the rate of change of angular (H˙A) momentum:

H˙A=(H˙A)Oxyz+Ω×HA

Substitute 14mr2ω˙2i+12mr2ω˙1j for (H˙A)Oxyz, ω2i for Ω and 14mr2ω2i+12mr2ω1j for HA.

H˙A=14mr2ω˙2i+12mr2ω˙1j+ω2i×14mr2ω2i+12mr2ω1j=14mr2ω˙2i+12mr2ω˙1j+12mr2ω1ω2k

Write the expression for the position vector (rA/O):

rA/O=(bk+cj)

Write the expression for the velocity (vA) of the disk A:

vA=ω2i+rA/O

Substitute (bk+cj) and rA/O.

vA=ω2i+(bk+cj)=bω2j+cω2k

Write the expression for the acceleration (aA) at point A:

aA=ω˙2j×rA/O+ω2j+vA

Substitute bω2j+cω2k for vA and (bk+cj) for rA/O.

aA=ω˙2j×(bk+cj)+ω2j+bω2j+cω2k=(bω˙2cω22)j+(cω˙2+bω2)k

Show the impulse momentum diagram as in Figure (1).

Vector Mechanics for Engineers: Statics and Dynamics, Chapter 18, Problem 18.153RP , additional homework tip  1

Write the expression for the sum of the forces:

F=maADyj+Dzk+Eyj+Ezk=maA

Substitute (bω˙2cω22)j+(cω˙2+bω2)k for aA.

Dyj+Dzk+Eyj+Ezk=m(bω˙2cω22)j+(cω˙2+bω2)k

Resolve the i and k component,

Dy+Ey=m(bω˙2cω22) (1)

Dz+Ez=m(cω˙2+bω22) (2)

Express the moment about the point D.

MD=(M0)i+2li×(Eyj+Ezk)=M0)i2lEzj+2lEyk

Write the expression for the position vector (rA/D) for AD:

rA/D=li+cjbk

Write the expression for the sum of the moment about D:

MD=H˙A+rA/D×maA

Substitute 14mr2ω˙2i+12mr2ω˙1j+12mr2ω1ω2k for H˙A, M0)i2lEzj+2lEyk for MD, li+cjbk for rA/D and (bω˙2cω22)j+(cω˙2+bω2)k for aA.

M0)i2lEzj+2lEyk={14mr2ω˙2i+12mr2ω˙1j+12mr2ω1ω2k+(li+cjbk)×m((bω˙2cω22)j+(cω˙2+bω2)k)}(M0)i2lEzj+2lEyk={m(14r2+b2+c2)ω˙2i+m(12r2ω˙1lcω˙2lbω22)j+m(12r2ω1ω2+lbω˙2lcω22)k}

Resolve the component i, j and k component.

For i component,

M0=m(14r2+b2+c2)ω˙2 (3)

For j component,

Ez=m2l(12r2ω˙1+lcω˙2+lbω22)=m2l(lcω˙2+lbω2212r2ω˙1) (4)

For k component,

Ey=m2l(12r2ω1ω2+lbω˙2lcω22) (5)

Calculate the mass of the disk (m) using the relation:

m=Wg

Substitute 6lb for W and 32.2ft/s2 for g.

m=632.2=0.186335lbs2/ft

Differentiate the angular velocity of ω1.

ω˙1=0

Differentiate the angular velocity of ω2.

ω˙2=0

Calculate the z component dynamic reaction (Ez) at point E:

Substitute 0.186335lbs2/ft for m, 0 for ω˙2, 0 for ω˙1, 8 rad/s for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 18, Problem 18.153RP , additional homework tip  2, 8in. for r, 12 in. for l, 9in. for b and 9in. for c in Equation (4).

Ey=0.1863352(12in.×1ft12in.)(0+(12in.×1ft12in.)(9in.×1ft12in.)(8)20)=0.0931675(48)=4.47lb

Calculate the y component dynamic reaction (Ey) at point E:

Substitute 0.186335lbs2/ft for m, 0 for ω˙2, 0 for ω˙1, 16rad/s for ω1, 8 rad/s for ω2, 8in. for r, 12 in. for l, 9in. for b, and 9in. for c in Equation (5).

Ey=0.1863352(12in.×1ft12in.)(12(8in.×1ft12in.)2(16×8)+0(12in.×1ft12in.)(9in.×1ft12in.)(8)2)=0.0931675×(28.4448)=1.822lb

Calculate the y component dynamic reaction (Dy) at point D:

Substitute 9in. for b and c, 0.186335lbs2/ft for m, 0 for ω˙2, 8 rad/s for ω2, and 1.822lb for Ey in Equation (1).

Dy+(1.822)=0.186335( (9in.×1ft12in.)(0)(9in.×1ft12in.)(8)2)Dy+(1.822)=8.94408Dy=8.94408+1.822Dy=7.12lb

Calculate the z component dynamic reaction (Dz) at point D:

Substitute 9in. for b and c , 0.186335lbs2/ft for m, 0 for ω˙2, 8 rad/s for ω2, and 4.47 lb for Ez in Equation (2).

Dz+4.47=0.186335((9in.×1ft12in.)(0)+(9in.×1ft12in.)82)Dz+4.47=8.944Dz=8.9444.47Dz=4.47lb

Calculate the dynamic reaction (D) at D:

D=Dyj+Dzk

Substitute 7.12lb for Dy and 4.47lb for Dz.

D=(7.12lb)j+(4.47lb)k

Calculate the dynamic reaction (E) at E:

E=Eyj+Ezk

Substitute 1.822lb for Ey and 4.47lb for Ez.

E=(1.822lb)j+(4.47lb)k

Thus, the dynamic reaction at D (D) and E (E) are (7.12lb)j+(4.47lb)k_ and (1.822lb)j+(4.47lb)k_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 m
I need handwritten solution with sketches for each
Given answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1

Chapter 18 Solutions

Vector Mechanics for Engineers: Statics and Dynamics

Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Prob. 18.43PCh. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Prob. 18.57PCh. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - 18.61 Determine the rate of change of the angular...Ch. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - Prob. 18.157RPCh. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY