VECTOR MECHANICS FOR ENGINEERS W/CON >B
VECTOR MECHANICS FOR ENGINEERS W/CON >B
12th Edition
ISBN: 9781260804638
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 18.2, Problem 18.103P

A 2.5-kg homogeneous disk of radius 80 mm rotates with an angular velocity ω1 with respect to arm ABC, which is welded to a shaft DCE rotating as shown at the constant rate ω2 = 12 rad/s. Friction in the bearing at A causes ω1 to decrease at the rate of 15 rad/s2. Determine the dynamic reactions at D and E at a time when ω1 has decreased to 50 rad/s.

Chapter 18.2, Problem 18.103P, A 2.5-kg homogeneous disk of radius 80 mm rotates with an angular velocity 1 with respect to arm

Fig. P18.103 and P18.104

Expert Solution & Answer
Check Mark
To determine

The dynamic reactions at D and E at a time when ω1 has decreased to 50 rad/s.

Answer to Problem 18.103P

The dynamic reactions at Dat a time when ω1 has decreased to 50 rad/s is (22.0N)i+(26.8N)j_.

The dynamic reactions at Eat a time when ω1 has decreased to 50 rad/s is (21.2N)i(5.20N)j_.

Explanation of Solution

Given information:

The mass (m) of the disk is 2.5kg.

The radius (r) of the disk Ais 80 mm.

The angular velocity (ω2) of the shaft DCE is12 rad/s.

The decreasing acceleration (ω˙1) of the shaft DCE is 15rad/s2.

Calculation:

The angular velocity (ωx) of disk A along the x-axis is zero.

Write the equation of angular velocity of disk A(ωy) along the y-axis:

ωy=ω1

Write the equation of angular velocity (ωz) of disk A along the z-axis:

ωz=ω2

Find the equation of angular velocity (ω) of disk.

ω=ωxi+ωyj+ωzk

Substitute 0 for ωx, ω1 for ωy, and ω2 for ωz.

ω=(0)i+(ω1)j+(ω2)k=ω1j+ω2k

Find the equation of angular momentum about A (HA) about A.

HA=I¯xωxi+I¯yωyj+I¯zωzk

Here, I¯x is the moment of inertia in the x direction, I¯y is the moment of inertia in the y direction, and I¯z is the moment of inertia in the z direction.

Substitute 0 for ωx, ω1 for ωy, and ω2 for ωz.

HA=I¯x(0)i+I¯yω1j+I¯zω2k=I¯yω1j+I¯zω2k (1)

Find the rate of change of angular momentum (H˙A)Axyz about the reference frame.

(H˙A)Axyz=I¯yω˙1j+I¯zω˙2k

Here, ω˙1 is the angular acceleration disk, and ω˙2 is the acceleration of shaft CBD and arm.

Write the equation of vector form of angular velocity (Ω) of the reference frame Axyz.

Ω=ω2k

Write the equation of the rate of change of angular momentum about A(H˙A).

(H˙A)=(H˙A)Axyz+Ω×HA

Substitute I¯yω˙1j+I¯zω˙2k for (H˙A)Axyz, ω2j for Ω, and I¯yω˙1j+I¯zω˙2k for H˙A.

H˙A=(I¯yω˙1j+I¯zω˙2k)+ω2k×(I¯yω1j+I¯zω2k)=(I¯yω˙1j+I¯zω˙2k)I¯yω1ω2i+0=I¯yω1ω2i+I¯yω˙1j+I¯zω˙2k (2)

Write the equation mass moment of inertia (I¯y) along y-axis.

I¯y=12mr2

Write the equation mass moment of inertia (I¯z) along z-axis.

I¯z=14mr2

Substitute 12mr2 for I¯y and 14mr2 for I¯z in Equation (2).

H˙A=12mr2ω1ω2i+12mr2ω˙1j+14mr2ω˙2k (3)

Find the position vector (rA/C) of A with respect to C.

rA/C=bicj

Here, b is the horizontal distance and c is the vertical distance.

Write the equation of velocity (vA) of the mass center A of the disk.

vA=ω2k×rA/C

Substitute bicj for rA/C.

vA=ω2k×(bicj)=bω2j+cω2i=cω2i+bω2j

Write the equation of acceleration of the mass center A of the disk.

aA=ω˙2k×rA/C+ω2k×vA

Substitute cω2i+bω2j for vA and bicj for rA/C.

aA=ω˙2k×(bicj)+ω2k×(cω2i+bω2j)=bω˙2j+cω˙2i+cω22jbω22i=(cω˙2bω22)i+(bω˙2+cω22)j

Sketch the free body diagram and kinetic diagram of the system as shown in Figure (1).

VECTOR MECHANICS FOR ENGINEERS W/CON >B, Chapter 18.2, Problem 18.103P

Refer Figure (1),

Apply Newton’s law of motion.

ΣF=ma¯Dxi+Dyj+Exi+Eyj=maA

Substitute (cω˙2bω22)i+(bω˙2+cω22)j for aA.

Dxi+Dyj+Exi+Eyj=m[(cω˙2bω22)i+(bω˙2+cω22)j]=m(cω˙2bω22)i+m(bω˙2+cω22)j (4)

Equate i-vector coefficients in Equation (4).

Dx+Ex=m(cω˙2bω22) (5)

Equate j-vector coefficients in Equation (4).

Dy+Ey=m(bω˙2+cω22) (6)

Find the rate of change of angular momentum about E (H˙E).

H˙E=H˙A+rA/E×maA

Here, rA/E is the position vector of E with respect to A.

Substitute 12mr2ω1ω2i+12mr2ω˙1j+14mr2ω˙2k for H˙A, bicj+lk for rA/E, and (cω˙2bω22)i+(bω˙2+cω22)j for aA.

H˙E=[(12mr2ω1ω2i+12mr2ω˙1j+14mr2ω˙2k)+(bicj+lk)×m((cω˙2bω22)i+(bω˙2+cω22)j)]

Apply matrix multiplication,

H˙E=[12mr2ω1ω2i+12mr2ω˙1j+14mr2ω˙2k+lm(bω˙2+cω22)i+lm(cω˙2bω22)j+bm(bω˙2+cω22)k+cm(cω˙2bω22)k]=[m(12r2ω1ω2blω˙2clω22)i+m(12r2ω˙1+clω˙1blω22)j+m(14r2+b2+c2)ω˙2k] (7)

Take moment about E.

ME=M0k+2lk×(Dxi+Dyj)=2lDyi+2lDxj+M0k= (8)

Here, Cz is the dynamic reaction at C along z-axis, M0 is the couple at O, and Cx is the dynamic reaction at C along x-axis.

The moment at E is equal to the rate of change of angular momentum at E.

Equate Equation (7) and (8).

2lDxj2lDyi+M0k=[m(12r2ω1ω2blω˙2clω22)i+m(12r2ω˙1+clω˙2blω22)j+m(14r2+b2+c2)ω˙2k] (9)

Convert the unit of radius from mm to m.

r=(80mm)(1m1,000mm)=0.08m

Convert the unit of b from mm to m.

b=(120mm)(1m1,000mm)=0.120m

Convert the unit of c from mm to m.

c=(60mm)(1m1,000mm)=0.06m

Convert the unit of l from mm to m.

l=(150mm)(1m1,000mm)=0.15m

Find the component of dynamic reaction (Dx) at D along x-axis.

Equate j vector in Equation (9).

2lDx=m(12r2ω˙1+clω˙2blω22)Dx=m2l(12r2ω˙1+clω˙2blω22) (10)

Substitute 2.5 kg for m, 0.08 m for r, 0.120 m for b, 0.06 m for c, 0 for ω˙2, 0.15 m for l, 12rad/s for ω2, 15rad/s2 for ω˙1, and 12rad/s for ω2.

Dx=2.52(0.15)(12(0.08)2(15)+(0.06)(0.15)(0)(0.12)(0.15)(12)2)=8.3333(0.048+02.592)=22N

Find the component of dynamic reaction (Dy) at D along y-axis.

Equate i vector in Equation (9).

2lDy=m(12r2ω1ω2blω˙2clω22)Dy=m2l(12r2ω1ω2+blω˙2+clω22) (11)

Substitute 2.5 kg for m, 0.08 m for r, 0.120 m for b, 0.06 m for c, 0 for ω˙2, 0.15 m for l, 50rad/s for ω1, and 12rad/s for ω2.

Dy=2.52(0.15)(12(0.08)2(12)(50)+(0.12)(0.15)(0)+(0.06)(0.15)(12)2)=8.3333(1.92+0+1.296)=26.8N

Find the dynamic reaction at D using the equation:

D=Dxi+Dyj

Substitute 22N for Dx and 26.8N for Dy.

D=(22N)i+(26.8N)j

Thus, the dynamic reaction at D is (22N)i+(26.8N)j_.

Find the component of dynamic reaction (Ex) at E along x-axis.

Substitute Equation (11) in (5).

m2l(12r2ω˙1+clω˙2blω22)+Ex=m(cω˙2bω22)Ex=mcω˙2mbω22mcω˙22+mbω222(12r2ω˙1)(m2l)Ex=mcω˙22mbω222(m2l)12r2ω˙1Ex=(m2l)(12r2ω˙1+clω˙2blω22)

Substitute 2.5 kg for m, 0.08 m for r, 0.120 m for b, 0.06 m for c,0 for ω˙2, 0.15 m for l, 12rad/s for ω2, 15rad/s2 for ω˙1, and 12rad/s for ω2.

Ex=2.52(0.15)(12(0.08)2(15)+(0.06)(0.15)(0)(0.12)(0.15)(12)2)=8.3333(0.048+02.592)=21.2N

Find the component of dynamic reaction (Ey) at E along y-axis.

Substitute Equation (12) in (6).

m2l(12r2ω1ω2+blω˙2+clω22)+Ey=m(bω˙2+cω22)Ey=mbω˙2+mcω22mbω˙22mcω222(m2l)(12r2ω1ω2)=mbω˙22+mcω222(m2l)(12r2ω1ω2)=(m2l)(12r2ω1ω2+blω˙2+clω22)

Substitute 2.5 kg for m, 0.08 m for r, 0.120 m for b, 0.06 m for c, 0 for ω˙2, 0.15 m for l, 50rad/s for ω1, and 12rad/s for ω2.

Ey=2.52(0.15)(12(0.08)2(12)(50)+(0.12)(0.15)(0)+(0.06)(0.15)(12)2)=8.3333(1.92+0+1.296)=5.20N

Find the dynamic reaction at E using the equation:

E=Exi+Eyj

Substitute 21.2N for Ex and 5.20N for Ey.

D=(21.2N)i(5.20N)j

Thus, the dynamic reaction at D is (21.2N)i(5.20N)j_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q6] (20 Marks) Select the most suitable choice for the following statements: modo digi -1A 10 af5 1 -The copper-based alloy which is responded to age hardening is a) copper-nickel b) aluminum bronze c) copper - beryllium d) brass besincaluy 2- Highly elastic polymers may experience elongations to greater than.... b) 500% bromsia-P c) 1000%. d) 1200% 15m or -2 a)100% 3- The cooling rate of quenching the steel in saltwater will be ......the cooling rate of quenching ir c) faster than sold) none of them a) slower than 4- Adding of a) Cr b) the same as ...... Will lead to stabilize the b) Mo 10 austenite in steel. c) Nimble avolls 1d) Sized loloin nl 5- The adjacent linear chains of crosslinked polymers are joined one to another at various positic DIR... by.........bonds c) covalent noisqo gd) ionic lg 120M 6- For the ceramic with coordination number 6 the cation to anion radius ratio will be a) Van der Waals a) 0.155-0.225 a) linear b) hydrogen (b) 0.225-0.414 c) 0.414 0.732 ..polymers.…
Examine Notes: Attempt Six Questions Only. rever necessa , Q1] (20 Marks) Answer with true (T) or false (F), corrects the wrong phrases, and gives sho reasons for correct and corrected statements: 1- High chromium irons are basically grey cast irons alloyed with 12 to 30 % Cr. yous board-19qgo orT-1 2- The drawbacks of Al- Li alloys are their high young modulus and high density.&M 0) (0 3- Vulcanized rubbers are classified under thermoplastic polymers. 4- Diamond is a stable carbon polymorph at room temperature and atmospheric pressure. ( 5- The metallic ions of ceramic are called anions, and they are positively charged. yldgiH-S 69001(6
H.W 5.4 Calculate the load that will make point A move to the left by 6mm, E-228GPa. The diameters of the rods are as shown in fig. below. 2P- PA 50mm B 200mm 2P 0.9m 1.3m

Chapter 18 Solutions

VECTOR MECHANICS FOR ENGINEERS W/CON >B

Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.61PCh. 18.2 - Determine the rate of change HD of the angular...Ch. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - A model of a type of crusher is shown. A disk of...Ch. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - The propeller of an air boat rotates at 1800 rpm....Ch. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - A homogeneous rectangular plate of mass m and...Ch. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY