Concept explainers
Determine the kinetic energy of the space probe of Prob. 18.34 in its motion about its mass center after its collision with the meteorite.
18.34 The coordinate axes shown represent the principal centroidal axes of inertia of a 3000-lb space probe whose radii of gyration are kx = 1.375 ft, ky = 1.425 ft, and kz = 1.250 ft. The probe has no angular velocity when a 5-oz meteorite strikes one of its solar panels at point A and emerges on the other side of the panel with no change in the direction of its velocity, but with a speed reduced by 25 percent. Knowing that the final angular velocity of the probe is ω = (0.05 rad/s)i − (0.12 rad/s)j + ωzk and that the x component of the resulting change in the velocity of the mass center of the probe is −0.675 in./s, determine (a) the component ωz of the final angular velocity of the probe, (b) the relative velocity v0 with which the meteorite strikes the panel.
Fig. P18.33 and P18.34
The kinetic energy
Answer to Problem 18.54P
The kinetic energy
Explanation of Solution
Given information:
The weight of the space probe
The radius of gyration along x axis
The radius of gyration along y axis
The radius of gyration along z axis
The weight of the meteorite (w) is 5 oz.
The angular velocity
The change in velocity of the mass center of the probe
The width of the side panel from center to point A (b) is 9 ft.
The length of the panel from center to point A (l) is 0.75 ft.
The speed is reduced by 25 percent.
Calculation:
Calculate the mass of the space probe
Here, g is the acceleration due to gravity.
Substitute
Calculate the mass of the meteorite (m) using the formula:
Substitute
Write the relative position vector
Substitute 9 ft for b and 0.75 ft.
Write the expression for the velocity
Calculate the initial liner momentum of the meteorite using the relation:
Substitute
Calculate the moment about origin
Substitute
The speed is reduced to 25 percent.
Calculate the final liner momentum of the meteorite using the relation:
Substitute
Calculate the final linear momentum of meteorite and its moment about the origin using the relation:
Substitute
The initial linear momentum of the space probe
Calculate the final linear momentum of the space probe using the relation:
Substitute
Substitute -0.675 in./s for
Calculate the final angular momentum of the space probe
Substitute
Write the expression for the conservation of linear momentum of the probe plus the meteorite as follows:
Substitute
Equate the i component from the Equation (1).
Equate j component from the Equation (1).
Equate k component from the Equation (1).
Write the expression for the conservation of angular momentum about the origin as follows:
Substitute
Equate i component from the equation (2).
Equate k component from the equation (2).
Substitute –4840 ft/s for
Calculate the kinetic energy of motion of the probe relative to its mass center
Substitute
Thus, the kinetic energy
Want to see more full solutions like this?
Chapter 18 Solutions
VECTOR MECHANICS FOR ENGINEERS W/CON >B
- Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You.arrow_forwardQ11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.arrow_forwardplease help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoaarrow_forward
- Solve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forward
- University of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forwardSolve using graphical method and analytical method, only expert should solvearrow_forwardSolve this and show all of the workarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY