Concept explainers
The kinetic energy (U) lost when plate hits the obstruction at B.
Answer to Problem 18.52P
The kinetic energy (U) lost when plate hits the obstruction at B is
Explanation of Solution
Given information:
The mass of the square plate is m.
The side of a square plate is a.
The angular velocity
Assume the impact to be perfectly plastic that is
Calculation:
Draw the diagram of the system as in Figure (1).
The length of the diagonal of a square is obtained by multiplying the side with
Write the expression for the angular velocity in the
Here,
Write the expression for the angular velocity in the
The unit vectors along the
Write the expression for the initial angular momentum about the mass center
Here,
Write the expression for the moment of inertia in the
Here, m is the mass and a is the side of the square plate.
Due to symmetry, moment of inertia in the
Write the expression for the angular momentum about
Substitute
Calculate the angular velocity at B
Here,
Substitute
The matrix multiplication for vector product is done.
The corner B does not rebound after impact. Therefore, the velocity of B after impact in the
Calculate the angular velocity about the mass center
Here,
Substitute
Substitute 0 for
Write the matrix multiplication for vector product is done.
Write the expression for the angular momentum about A as follows:
Here,
Calculate the angular momentum about G using the formula:
Substitute 0 for
Substitute
The matrix multiplication is done for vector product.
The initial velocity of mass center (
Calculate the initial momentum about A using the relation:
Here,
Substitute
Draw the forces acting on the plate as in Figure (2).
Write the expression for the moment about A as follows:
The matrix multiplication for vector product is done.
Substitute Equation (6) and Equation (7).
Equate
Equate
Equate
Calculate the velocity along the x, y and z axes
Substitute 0 for
Substitute
Calculate the kinetic energy of the system before impact
Substitute 0 for
Calculate the kinetic energy of the system after impact
Substitute
Calculate the loss in kinetic energy (U) using the formula:
Substitute
Thus, the kinetic energy (U) lost when plate hits the obstruction at B is
Want to see more full solutions like this?
Chapter 18 Solutions
VECTOR MECHANICS FOR ENGINEERS W/CON >B
- Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You.arrow_forwardQ11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.arrow_forwardplease help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoaarrow_forward
- Solve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forward
- University of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forwardSolve using graphical method and analytical method, only expert should solvearrow_forwardSolve this and show all of the workarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY