Organic Chemistry
Organic Chemistry
3rd Edition
ISBN: 9781119338352
Author: Klein
Publisher: WILEY
Question
Book Icon
Chapter 18, Problem 75IP

 (a)

Interpretation Introduction

Interpretation:

  • The given following compounds have to be designed using other reagents.

 Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Friedel-Crafts Acylation: This electrophilic aromatic substitution allows the synthesis of monoacylated yield from the reaction stuck between arenes and acyl chlorides or anhydrides. The products are deactivated, as well as do not undergo a second substitution.

(b)

Interpretation Introduction

Interpretation:

The given following compounds have to be designed using other reagents.

Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Friedel-Crafts Acylation: This electrophilic aromatic substitution allows the synthesis of monoacylated yield from the reaction stuck between arenes and acyl chlorides or anhydrides. The products are deactivated, as well as do not undergo a second substitution.

Blurred answer
Students have asked these similar questions
What is the missing intermediate 1 and the final product 2. Please include a detailed explanation explaining the steps of malonic ester synthesis. Please include drawings of the intermediate and how it occurs and how the final product is former.
What would be the reagents and conditions above and below the arrow that will complete the proposed acetoacetic ester synthesis? If it cannot be done efficiently, then I will choose that answer. There could be 2 or 4 reagents involved. Please provide a detailed explanation and drawings showing how it would proceed with the correct reagents.
For benzene, the ∆H° of vaporization is 30.72 kJ/mol and the ∆S° of vaporization is 86.97 J/mol・K. At 1.00 atm and 228.0 K, what is the ∆G° of vaporization for benzene, in kJ/mol?

Chapter 18 Solutions

Organic Chemistry

Ch. 18.7 - Prob. 11CCCh. 18.7 - Prob. 12CCCh. 18.8 - Prob. 13CCCh. 18.9 - Prob. 14CCCh. 18.9 - Prob. 15CCCh. 18.10 - Prob. 1LTSCh. 18.10 - Prob. 16PTSCh. 18.11 - Prob. 2LTSCh. 18.11 - Prob. 18PTSCh. 18.11 - Prob. 19ATSCh. 18.11 - Prob. 3LTSCh. 18.11 - Prob. 20PTSCh. 18.11 - Prob. 21ATSCh. 18.11 - Prob. 4LTSCh. 18.11 - Prob. 22PTSCh. 18.11 - Prob. 23ATSCh. 18.12 - Prob. 24CCCh. 18.12 - Prob. 25CCCh. 18.12 - Prob. 5LTSCh. 18.12 - Prob. 26PTSCh. 18.12 - 2-Nitroaniline has been used as a precursor in the...Ch. 18.12 - Prob. 6LTSCh. 18.12 - Prob. 28PTSCh. 18.12 - Prob. 29ATSCh. 18.13 - Prob. 30CCCh. 18.13 - Prob. 31CCCh. 18.13 - Prob. 32CCCh. 18.14 - Prob. 33CCCh. 18.14 - Prob. 34CCCh. 18.15 - Prob. 7LTSCh. 18.15 - Prob. 35PTSCh. 18.15 - Prob. 36PTSCh. 18 - Prob. 38PPCh. 18 - Prob. 39PPCh. 18 - Prob. 40PPCh. 18 - Prob. 41PPCh. 18 - Prob. 42PPCh. 18 - Prob. 43PPCh. 18 - Prob. 44PPCh. 18 - Prob. 45PPCh. 18 - Prob. 46PPCh. 18 - Prob. 47PPCh. 18 - Prob. 48PPCh. 18 - Prob. 49PPCh. 18 - Prob. 50PPCh. 18 - Prob. 51PPCh. 18 - Prob. 52PPCh. 18 - Prob. 53PPCh. 18 - Prob. 54PPCh. 18 - Prob. 55PPCh. 18 - Prob. 56PPCh. 18 - Prob. 57PPCh. 18 - Prob. 58PPCh. 18 - Prob. 59PPCh. 18 - Prob. 60PPCh. 18 - Prob. 61PPCh. 18 - Prob. 62PPCh. 18 - Prob. 63PPCh. 18 - Prob. 64PPCh. 18 - When 2,4-dibromo-3-methyltolene is treated with...Ch. 18 - Prob. 66PPCh. 18 - Prob. 67PPCh. 18 - Prob. 68PPCh. 18 - Prob. 69PPCh. 18 - Prob. 70PPCh. 18 - Prob. 71PPCh. 18 - Prob. 72PPCh. 18 - Prob. 74IPCh. 18 - Prob. 75IPCh. 18 - Prob. 76IPCh. 18 - Prob. 77IPCh. 18 - Prob. 78IPCh. 18 - Prob. 79IPCh. 18 - Prob. 80IPCh. 18 - Prob. 81IPCh. 18 - Prob. 82IPCh. 18 - Prob. 83IPCh. 18 - Prob. 84IPCh. 18 - Prob. 85IPCh. 18 - Prob. 86IPCh. 18 - Prob. 87IPCh. 18 - Prob. 88IPCh. 18 - Prob. 89IPCh. 18 - Prob. 90IPCh. 18 - Prob. 91CPCh. 18 - Prob. 92CPCh. 18 - In the following reaction, iodine monochloride...Ch. 18 - Prob. 94CPCh. 18 - The following synthesis was developed in an...
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY