COLLEGE PHYSICS
2nd Edition
ISBN: 9781711470832
Author: OpenStax
Publisher: XANEDU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 62PE
Integrated Concepts
The classic Millikan oil drop experiment was the first to obtain an accurate measurement of the charge on an electron. In it, oil drops were suspended against the gravitational force by a vertical electric field. (See Figure 18.58.) Given the oil drop to be 1.00 μm in radius and have a density of 920 kg/m3:
- Find the weight of the drop. (b) If the drop has a single excess electron, find the electric field strength needed to balance its weight.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
ASAP
important
In the Minkan of-drop experiment illustrated in the figure below, an atomizer (a sprayer with a fine nozzle) is used to introduce many tiny droplets of oil between two oppositely charged parallel me
plates. Some of the droplets pick up one or more excess electrons. The charge on the plates is adjusted so that the electric force on the excess electrons exactly balances the weight of the droplet.
idea is to look for a droplet that has the smallest electric force and assume it has only one excess electron. Suppose we are using an electric field of 5.15 x 10 N/C. The charge on one electron is
160 x 10 C. Calculate the radius of an oil drop of density 894 kg/m³ for which its weight could be balanced by the electric force of this field on one electron
Oil droplets
Telescope with
scale in eyepiece
Pinhole
Light
Chapter 18 Solutions
COLLEGE PHYSICS
Ch. 18 - There are very large numbers of charged particles...Ch. 18 - Why do most objects tend to contain nearly equal...Ch. 18 - An eccentric inventor attempts to levitate by...Ch. 18 - If you have charged an electroscope by contact...Ch. 18 - When a glass rod is rubbed with silk, it becomes...Ch. 18 - Why does a car always attract dust right after it...Ch. 18 - Describe how a positively charged object can be...Ch. 18 - What is grounding? What effect does it have on a...Ch. 18 - Prob. 9CQCh. 18 - If the electric field lines in the figure above...
Ch. 18 - The discussion of the electric field between two...Ch. 18 - Would the self-created electric field at the end...Ch. 18 - Why is a golfer with a metal dub over her shoulder...Ch. 18 - Can the belt of aVan de Graaff accelerator he a...Ch. 18 - Are you relatively safe from lightning inside an...Ch. 18 - Discuss pros and cons of a lightning rod being...Ch. 18 - Prob. 17CQCh. 18 - Prob. 18CQCh. 18 - Prob. 19CQCh. 18 - Prob. 20CQCh. 18 - Prob. 21CQCh. 18 - In regions of low humidity, one develops a special...Ch. 18 - Tollbooth stations on roadways and bridges usually...Ch. 18 - Suppose a woman carries an excess charge. To...Ch. 18 - Prob. 25CQCh. 18 - Prob. 26CQCh. 18 - Given the polar character of water molecules,...Ch. 18 - Why must the test charge q in the definition of...Ch. 18 - Are the direction and magnitude of the Coulomb...Ch. 18 - Compare and contrast the Coulomb force field and...Ch. 18 - Prob. 31CQCh. 18 - A cell membrane is a thin layer enveloping a cell....Ch. 18 - Common static electricity involves charges ranging...Ch. 18 - If 1.801020electrons move through a pocket...Ch. 18 - To start a car engine, the car battery moves...Ch. 18 - A certain lightning bolt moves 40.0 C of charge....Ch. 18 - Suppose a speck of dust in an electrostatic...Ch. 18 - An amoeba has 1.001016protons and a net charge of...Ch. 18 - A 50.0 g ball of copper has a net charge of 2.00...Ch. 18 - What net charge would you place on a 100 g piece...Ch. 18 - How many coulombs of positive charge are there in...Ch. 18 - Prob. 10PECh. 18 - Prob. 11PECh. 18 - Prob. 12PECh. 18 - Prob. 13PECh. 18 - Prob. 14PECh. 18 - Prob. 15PECh. 18 - Prob. 16PECh. 18 - Prob. 17PECh. 18 - Prob. 18PECh. 18 - Prob. 19PECh. 18 - Prob. 20PECh. 18 - Prob. 21PECh. 18 - Prob. 22PECh. 18 - Prob. 23PECh. 18 - What is the repulsive force between two pith balls...Ch. 18 - (a) How strong is the attractive force between a...Ch. 18 - Two point charges exert a 5.00 N force on each...Ch. 18 - Two point charges are brought closer together,...Ch. 18 - How far apart must two point charges of 75.0 nC...Ch. 18 - If two equal charges each of 1 C each are...Ch. 18 - A test charge of +2C is placed halfway between a...Ch. 18 - Bare free charges do not remain stationary when...Ch. 18 - (a) By what factor must you change the distance...Ch. 18 - Suppose you have a total charge qtot that you can...Ch. 18 - (a) Common transparent tape becomes charged when...Ch. 18 - Find the ratio of the electrostatic to...Ch. 18 - At what distance is the electrostatic force...Ch. 18 - A certain five cent coin contains 5.00 g of...Ch. 18 - (a) Two point charges totaling 8.00 C exert a...Ch. 18 - Point charges of 5.00 C and 3.00/C are placed...Ch. 18 - (a) Two point charges q1 and q23.00 m apart, and...Ch. 18 - What is the magnitude and direction of an electric...Ch. 18 - What is the magnitude and direction of the force...Ch. 18 - Calculate the magnitude of the electric field 2.00...Ch. 18 - (a) What magnitude point charge creates a 10,000...Ch. 18 - Calculate the initial (from rest) acceleration of...Ch. 18 - (a) Find the direction and magnitude of an...Ch. 18 - (a) Sketch the electric field lines near a point...Ch. 18 - Prob. 48PECh. 18 - Prob. 49PECh. 18 - Prob. 50PECh. 18 - (a) What is the electric field 5.00 m from the...Ch. 18 - (a) What is the direction and magnitude of an...Ch. 18 - Prob. 53PECh. 18 - Earth has a net charge that produces an electric...Ch. 18 - Point charges of 25.0 C and 45.0 (2 are placed...Ch. 18 - What can you say about two charges q1and q2, if...Ch. 18 - Integrated Concepts Calculate the angular velocity...Ch. 18 - Integrated Concepts An electron has an initial...Ch. 18 - Integrated Concepts The practical limit to an...Ch. 18 - Integrated Concepts A 5.00 g charged insulating...Ch. 18 - Integrated Concepts Figure 18.57 shows an electron...Ch. 18 - Integrated Concepts The classic Millikan oil drop...Ch. 18 - Integrated Concepts (a) In Figure 18.59, four...Ch. 18 - Unreasonable Results 64. (a) Calculate the...Ch. 18 - Unreasonable results (a) Two 0.500 g raindrops in...Ch. 18 - Unreasonable results A wrecking yard inventor...Ch. 18 - Construct Your Own Problem Consider two insulating...Ch. 18 - Construct Your Own Problem Consider identical...Ch. 18 - Prob. 1TPCh. 18 - Prob. 2TPCh. 18 - Prob. 3TPCh. 18 - Prob. 4TPCh. 18 - Prob. 5TPCh. 18 - Prob. 6TPCh. 18 - Prob. 7TPCh. 18 - Prob. 8TPCh. 18 - Prob. 9TPCh. 18 - Prob. 10TPCh. 18 - Prob. 11TPCh. 18 - Prob. 12TPCh. 18 - Prob. 13TPCh. 18 - Prob. 14TPCh. 18 - Prob. 15TPCh. 18 - Prob. 16TPCh. 18 - Prob. 17TPCh. 18 - Prob. 18TPCh. 18 - Prob. 19TPCh. 18 - Prob. 20TPCh. 18 - Prob. 21TPCh. 18 - Prob. 22TPCh. 18 - Prob. 23TPCh. 18 - Prob. 24TPCh. 18 - Prob. 25TPCh. 18 - Prob. 26TPCh. 18 - Prob. 27TPCh. 18 - Prob. 28TPCh. 18 - Prob. 29TPCh. 18 - Prob. 30TPCh. 18 - Prob. 31TPCh. 18 - Prob. 32TPCh. 18 - Prob. 33TPCh. 18 - Prob. 34TPCh. 18 - Prob. 35TPCh. 18 - Prob. 36TPCh. 18 - Prob. 37TPCh. 18 - Prob. 38TPCh. 18 - Prob. 39TPCh. 18 - Prob. 40TPCh. 18 - Prob. 41TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
In mice, a short-tailed mutant was discovered. When it was crossed to a normal long-tailed mouse, 4 offspring w...
Concepts of Genetics (12th Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
51. I A tennis player hits a ball 2.0 m above the ground. The ball leaves his racquet with a speed of 20.0 m/s ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
DRAW IT In human spermatogenesis, mitosis of a stem cell gives rise to one cell that remains a stem cell and on...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A person is placed in a large, hollow, metallic sphere that is insulated from ground, (a) If a large charge is placed on the sphere, will the person be harmed upon touching the inside of the sphere? (b) Explain what will happen if the person also has an initial charge whose sign is opposite that of the charge on the sphere.arrow_forwardUnreasonable results A wrecking yard inventor wants to pick up cars by charging a 0.400 m diameter ball and inducing an equal and opposite charge on the car. If a car has a 1000 kg mass and the ball is to be able to lift it from a distance of 1.00 m: (a) What minimum charge must be used? (b) What is the electric field near the surface of the ball? (c) Why are these results unreasonable? (d) Which premise or assumption is responsible?arrow_forwardYou are working on a research project in which you must control the direction of travel of electrons using deflection plates. You have devised the apparatus shown in Figure P22.28. The plates are of length = 0.500 m and are separated by a distance d = 3.00 cm. Electrons are fired at vi = 5.00 106 m/s into a uniform electric field from the left edge of the lower, positive plate, aimed directly at the right edge of the upper, negative plate. Therefore, if there is no electric field between the plates, the electrons will follow the broken line in the figure. With an electric field existing between the plates, the electrons will follow a curved path, bending downward. You need to determine (a) the range of angles over which the electron can leave the apparatus and (b) the electric field required to give the maximum possible deviation angle. Figure P22.28arrow_forward
- A thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forwardThe liquid-drop model of the atomic nucleus suggests high-energy oscillations of certain nuclei can split the nucleus into two unequal fragments plus a few neutrons. The fission products acquire kinetic energy from their mutual Coulomb repulsion. Assume the charge is distributed uniformly throughout the volume of each spherical fragment and. immediately before separating each fragment is at rest and their surfaces are in contact. The electrons surrounding the nucleus can be ignored. Calculate the electric potential energy (in electron volts) of two spherical fragments from a uranium nucleus having the following charges and radii: 38e and 5.50 10-15 m. and 54e and 6.20 10-15 m.arrow_forward(a) What is the direction and magnitude of an electric field that supports the weight of a free electron near the surface of Earth? (b) Discuss what the small value for this field implies regarding the relative strength of the gravitational and electrostatic forces.arrow_forward
- An oil droplet is sprayed into a uniform electric field of adjustable magnitude. The 0.0400g droplet hovers motionless when the electric field is set to 370N/C and directed downward. a. What was the charge of the oil droplet in Coulombs? b. Determine the approximate number of excess or defecit electrons on the droplet.arrow_forwardV is the energy (in J) required to bring the two charges from infinite distance separation to distance r (in nm).Q1 and Q2 are the charges in terms of electrons.(i.e. the constant in the above expression is 2.31×10-19 J nm electrons-2) For a group of "point" charges (e.g. ions) the total energy of interaction is the sum of the interaction energies for the individual pairs. Calculate the energy of interaction for the square arrangement of ions shown in the diagram below.arrow_forwardAn oil droplet is sprayed into a uniform electric field of adjustable magnitude.The 0.04g droplet hovers motionless (gravity force equalling electrostatic force) when the electric field is set to 370N/C and directed downward. a.Determine the sign and magnitude of the charge on the oil droplet. b.Determine the approximate number of excess electrons that are on the oil droplet. c.Determine the voltage required to create this electric field between the parallel plates, if the plates are positioned30cm apart with one on top of the other.arrow_forward
- 1) Consider the figure below. An electron is fired towards a conducting plate from a distance L. The plate has a surface charge density a and a radius that is much greater than the distance L.. When the electron strikes the plate, it is measured that AK. E. 10 eV, where AK. E. Ty-To is the difference between the electron's final kinetic energy and initial kinetic energy. = a) Draw a diagram of the configuration including the co-ordinate system you have chosen. b) Write the integral equation for the work done on the electron when moving from it's initial position to an arbitrary final position, x . c) Write the integral equation for the potential difference of the system for a path that begins at the electron's initial position and ends at an arbitrary position, x. d) Determine the equation for the potential difference between the initial position of the electron and an arbitrary position, x. e) Plot the potential difference from part d) f) If the electron is initially at rest and L=…arrow_forwardAtoms have an equal number of electrons and protons so are electrically neutral. Atoms that have a net electrical charge are known as "ions". Positive ions - have "missing" electrons Negative ions - have "excess" electrons 3. The net charge of an object can be found be summing the individual charges. Since charge is quantized, all net charges are just an integer multiple of the elementary charge. q-ne where q is the net charge and n is an integer. For example, sodium can be a +1 ion and chlorine can be a -1 ion. What does this mean concerning their charge and structure? Revised 1/20 L2 D Ctlo But, what if you want to look at larger objects that are charged; e.g., objects made up of a huge number of atoms/molecules. How do these objects become charged?arrow_forward3. A small piece of rubber from shoe has a charge -10uC and an area rug with charge 4 uC are separated by a distance of 10cm: a. Is the Electrostatic force repulsive or attractive ? Explain b. Determine the electrostatic force using the Coulomb's Law equation and the Coulomb's Electrostatic Force Calculator. Step 1: List all the measurements given: Q, = µC ,Q;= µC ,d= cm, k=9.0x 10°NM/C Step 2: Substitute : F =(9.0x 10°NM/C )( µC)( µC) 7 ( cm) elect Step 3: Use Coulomb's Electrostatic Force Calculator To get the final answer F !! elect C. If the -10uC charge were halved and the distance between the charges halved, did the electrostatic increase or decrease? Justify your answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY