COLLEGE PHYSICS
2nd Edition
ISBN: 9781711470832
Author: OpenStax
Publisher: XANEDU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 24TP
To determine
The number of excess electrons in thedrop.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The classic Millikan oil drop experiment setup is shown below.
In this experiment oil drops are suspended in a vertical electric field against the gravitational force to measure their charge. If the mass of a negatively charged drop suspended in an electric field of 1.76 ✕ 10−4 N/C strength is 8.620 ✕ 10−21 g, find the number of excess electrons in the drop.
The classic Millikan oil drop experiment was the first to obtain an accurate measurement of the charge on an electron. In it, oil drops were suspended against the gravitational force by a vertical electric field.
a)Given that the oil drop is 1.2 μm in radius and has a density of 905 kg/m3, find the weight of the drop in N.
b)If the drop has a single excess electron, find the electric field strength needed to balance its weight.
You plan to shock your sibling with an electrostatic charge. To do this, you need to collect electrons from your carpet by rubbing your feet. Your sibling has +8.2 10-6 C excess charge.
(a) What is the minimum amount of electrons you would need to shock your sibling assuming your sibling will be neutral after the shock?(b) What is the minimum mass you will be losing? (kg)
Chapter 18 Solutions
COLLEGE PHYSICS
Ch. 18 - There are very large numbers of charged particles...Ch. 18 - Why do most objects tend to contain nearly equal...Ch. 18 - An eccentric inventor attempts to levitate by...Ch. 18 - If you have charged an electroscope by contact...Ch. 18 - When a glass rod is rubbed with silk, it becomes...Ch. 18 - Why does a car always attract dust right after it...Ch. 18 - Describe how a positively charged object can be...Ch. 18 - What is grounding? What effect does it have on a...Ch. 18 - Prob. 9CQCh. 18 - If the electric field lines in the figure above...
Ch. 18 - The discussion of the electric field between two...Ch. 18 - Would the self-created electric field at the end...Ch. 18 - Why is a golfer with a metal dub over her shoulder...Ch. 18 - Can the belt of aVan de Graaff accelerator he a...Ch. 18 - Are you relatively safe from lightning inside an...Ch. 18 - Discuss pros and cons of a lightning rod being...Ch. 18 - Prob. 17CQCh. 18 - Prob. 18CQCh. 18 - Prob. 19CQCh. 18 - Prob. 20CQCh. 18 - Prob. 21CQCh. 18 - In regions of low humidity, one develops a special...Ch. 18 - Tollbooth stations on roadways and bridges usually...Ch. 18 - Suppose a woman carries an excess charge. To...Ch. 18 - Prob. 25CQCh. 18 - Prob. 26CQCh. 18 - Given the polar character of water molecules,...Ch. 18 - Why must the test charge q in the definition of...Ch. 18 - Are the direction and magnitude of the Coulomb...Ch. 18 - Compare and contrast the Coulomb force field and...Ch. 18 - Prob. 31CQCh. 18 - A cell membrane is a thin layer enveloping a cell....Ch. 18 - Common static electricity involves charges ranging...Ch. 18 - If 1.801020electrons move through a pocket...Ch. 18 - To start a car engine, the car battery moves...Ch. 18 - A certain lightning bolt moves 40.0 C of charge....Ch. 18 - Suppose a speck of dust in an electrostatic...Ch. 18 - An amoeba has 1.001016protons and a net charge of...Ch. 18 - A 50.0 g ball of copper has a net charge of 2.00...Ch. 18 - What net charge would you place on a 100 g piece...Ch. 18 - How many coulombs of positive charge are there in...Ch. 18 - Prob. 10PECh. 18 - Prob. 11PECh. 18 - Prob. 12PECh. 18 - Prob. 13PECh. 18 - Prob. 14PECh. 18 - Prob. 15PECh. 18 - Prob. 16PECh. 18 - Prob. 17PECh. 18 - Prob. 18PECh. 18 - Prob. 19PECh. 18 - Prob. 20PECh. 18 - Prob. 21PECh. 18 - Prob. 22PECh. 18 - Prob. 23PECh. 18 - What is the repulsive force between two pith balls...Ch. 18 - (a) How strong is the attractive force between a...Ch. 18 - Two point charges exert a 5.00 N force on each...Ch. 18 - Two point charges are brought closer together,...Ch. 18 - How far apart must two point charges of 75.0 nC...Ch. 18 - If two equal charges each of 1 C each are...Ch. 18 - A test charge of +2C is placed halfway between a...Ch. 18 - Bare free charges do not remain stationary when...Ch. 18 - (a) By what factor must you change the distance...Ch. 18 - Suppose you have a total charge qtot that you can...Ch. 18 - (a) Common transparent tape becomes charged when...Ch. 18 - Find the ratio of the electrostatic to...Ch. 18 - At what distance is the electrostatic force...Ch. 18 - A certain five cent coin contains 5.00 g of...Ch. 18 - (a) Two point charges totaling 8.00 C exert a...Ch. 18 - Point charges of 5.00 C and 3.00/C are placed...Ch. 18 - (a) Two point charges q1 and q23.00 m apart, and...Ch. 18 - What is the magnitude and direction of an electric...Ch. 18 - What is the magnitude and direction of the force...Ch. 18 - Calculate the magnitude of the electric field 2.00...Ch. 18 - (a) What magnitude point charge creates a 10,000...Ch. 18 - Calculate the initial (from rest) acceleration of...Ch. 18 - (a) Find the direction and magnitude of an...Ch. 18 - (a) Sketch the electric field lines near a point...Ch. 18 - Prob. 48PECh. 18 - Prob. 49PECh. 18 - Prob. 50PECh. 18 - (a) What is the electric field 5.00 m from the...Ch. 18 - (a) What is the direction and magnitude of an...Ch. 18 - Prob. 53PECh. 18 - Earth has a net charge that produces an electric...Ch. 18 - Point charges of 25.0 C and 45.0 (2 are placed...Ch. 18 - What can you say about two charges q1and q2, if...Ch. 18 - Integrated Concepts Calculate the angular velocity...Ch. 18 - Integrated Concepts An electron has an initial...Ch. 18 - Integrated Concepts The practical limit to an...Ch. 18 - Integrated Concepts A 5.00 g charged insulating...Ch. 18 - Integrated Concepts Figure 18.57 shows an electron...Ch. 18 - Integrated Concepts The classic Millikan oil drop...Ch. 18 - Integrated Concepts (a) In Figure 18.59, four...Ch. 18 - Unreasonable Results 64. (a) Calculate the...Ch. 18 - Unreasonable results (a) Two 0.500 g raindrops in...Ch. 18 - Unreasonable results A wrecking yard inventor...Ch. 18 - Construct Your Own Problem Consider two insulating...Ch. 18 - Construct Your Own Problem Consider identical...Ch. 18 - Prob. 1TPCh. 18 - Prob. 2TPCh. 18 - Prob. 3TPCh. 18 - Prob. 4TPCh. 18 - Prob. 5TPCh. 18 - Prob. 6TPCh. 18 - Prob. 7TPCh. 18 - Prob. 8TPCh. 18 - Prob. 9TPCh. 18 - Prob. 10TPCh. 18 - Prob. 11TPCh. 18 - Prob. 12TPCh. 18 - Prob. 13TPCh. 18 - Prob. 14TPCh. 18 - Prob. 15TPCh. 18 - Prob. 16TPCh. 18 - Prob. 17TPCh. 18 - Prob. 18TPCh. 18 - Prob. 19TPCh. 18 - Prob. 20TPCh. 18 - Prob. 21TPCh. 18 - Prob. 22TPCh. 18 - Prob. 23TPCh. 18 - Prob. 24TPCh. 18 - Prob. 25TPCh. 18 - Prob. 26TPCh. 18 - Prob. 27TPCh. 18 - Prob. 28TPCh. 18 - Prob. 29TPCh. 18 - Prob. 30TPCh. 18 - Prob. 31TPCh. 18 - Prob. 32TPCh. 18 - Prob. 33TPCh. 18 - Prob. 34TPCh. 18 - Prob. 35TPCh. 18 - Prob. 36TPCh. 18 - Prob. 37TPCh. 18 - Prob. 38TPCh. 18 - Prob. 39TPCh. 18 - Prob. 40TPCh. 18 - Prob. 41TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A charge of 36.3 nC is transferred to a neutral copper ball of radius 4.35 cm. The ball is not grounded. The excess electrons spread uniformly on the surface of the ball. What is the number density (number of electrons per unit surface area) of excess electrons on the surface of the ball?arrow_forwardYou are working on a research project in which you must control the direction of travel of electrons using deflection plates. You have devised the apparatus shown in Figure P22.28. The plates are of length = 0.500 m and are separated by a distance d = 3.00 cm. Electrons are fired at vi = 5.00 106 m/s into a uniform electric field from the left edge of the lower, positive plate, aimed directly at the right edge of the upper, negative plate. Therefore, if there is no electric field between the plates, the electrons will follow the broken line in the figure. With an electric field existing between the plates, the electrons will follow a curved path, bending downward. You need to determine (a) the range of angles over which the electron can leave the apparatus and (b) the electric field required to give the maximum possible deviation angle. Figure P22.28arrow_forwardTwo 25.0-g copper spheres are placed 75.0 cm apart. Each copper atom has 29 electrons, and the molar mass of copper is 63.5463 g/mol. What fraction of the electrons from the first sphere must be transferred to the second sphere for the net electrostatic force between the spheres to equal 100 kN?arrow_forward
- Three charged particles are aligned along the x axis as shown in Figure P22.35. Find the electric field at (a) the position (2.00 m, 0) and (b) the position (0, 2.00 m). Figure P22.35arrow_forwardA thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forward5 x 107 m/s. A –4 µC charge at A 3 µC charge at x=0, y=1 m has a velocity vz = x=2 m, y=0 has a velocity v, = 8 × 107 m/s. Calculate the field at the origin due to the motion of these charges.arrow_forward
- Question 1 a) In J. J. Thomson experiment (1897), an electron moving horizontally with a constant speed vo enters in between the horizontal plates of a capacitor. The electric field strength between the plates of length L and distance d, is E. The vertical deviation of the electron at the moment of exit from the field region is measured to be Y. Derive the expression giving the electron's charge to mass ratio, i.e. e/m to be 2v,Y/CEL). (Recall that Thomson received Nobel Prize for his achievement.) b) Calculate e/m, knowing the following data. E=1.6x10* Newton/Coulomb, L=10 cm, Y=2.9 cm, v=2.19x10* km/s. (Be careful to use coherent units.)arrow_forwardThe classic Millikan oil drop experiment was the first to obtain an accurate measurement of the charge on an electron. In it, oil drops were suspended against gravity by a vertical electric field. Assume the oil drop to be 2.30 um in radius and have a density of 934 kg/m3. a) Find the weight of the drop. b) If the drop has a single excess electron, find the magnitude of the electric field strength needed to balance its weight.arrow_forwardIn this experiment oil drops are suspended in a vertical electric field against the gravitational force to measure their charge. If the mass of a negatively charged drop suspended in an electric field of 1.76 ✕ 10−4 N/C strength is 2.299 ✕ 10−20 g, find the number of excess electrons in the drop.arrow_forward
- The electric field strength at a certain distance from an isolated alpha particle is 3.0 x 10 NC-. What is the force on an electron when at that distance from the alpha particle?arrow_forwardRebecca inflates a rubber party balloon, ties it to a string, and hangs it from the ceiling. Then she rubs the balloon with a wool sweater. Suppose that she transfers one trillion “extra” electrons (1012 e−) to the balloon. Assume, too, that you can pretend that all of this excess charge is located at the center of the balloon. What is the electric field strength 1 m from the center of the balloon?arrow_forwardAn electron flies into a constant electric field (along the direction of the lines of E-field). The initial electron velocity is 10 km/s. Calculate the magnitude the electric field if the electron stops in 6 nsec. The electron mass is me =9.11×10-31 kg, the electron charge is qe = -1.61×10-19 C. The electric field, E = Units .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY