
EBK ORGANIC CHEMISTRY
8th Edition
ISBN: 8220102744127
Author: Bruice
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 61P
Describe two ways to prepare anisole from benzene.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
6. The equilibrium constant for the reaction
2 HBr (g)
→ H2(g) + Br2(g)
Can be expressed by the empirical formula
11790 K
In K-6.375 + 0.6415 In(T K-¹)
-
T
Use this formula to determine A,H as a function of temperature. Calculate A,-H at 25 °C and at
100 °C.
3. Nitrosyl chloride, NOCI, decomposes according to
2 NOCI (g) → 2 NO(g)
+ Cl2(g)
Assuming that we start with no moles of NOCl (g) and no NO(g) or Cl2(g), derive an expression
for Kp in terms of the equilibrium value of the extent of reaction, Seq, and the pressure, P.
Given that K₂ = 2.00 × 10-4, calculate Seq/
of
29/no when P = 0.080 bar. What is the new value
по
ƒª/ at equilibrium when P = 0.160 bar? Is this result in accord with Le Châtelier's
Principle?
Consider the following chemical equilibrium:
2SO2(g) + O2(g) = 2SO3(g)
•
Write the equilibrium constant expression for this reaction.
Now compare it to the equilibrium constant expression for the related reaction:
•
.
1
SO2(g) + O2(g) = SO3(g)
2
How do these two equilibrium expressions differ?
What important principle about the dependence of equilibrium constants on the stoichiometry of a
reaction can you learn from this comparison?
Chapter 18 Solutions
EBK ORGANIC CHEMISTRY
Ch. 18.1 - Draw the structure for each of the following: a....Ch. 18.3 - Why does hydration inactivate FeBr3?Ch. 18.6 - Prob. 4PCh. 18.7 - What is the major product of a Friedel-Crafts...Ch. 18.9 - Describe two ways to prepare each of the following...Ch. 18.10 - Prob. 7PCh. 18.11 - Name the following:Ch. 18.11 - Draw a structure for each of the following: a....Ch. 18.11 - Draw the structure for each of the following: a....Ch. 18.11 - Correct the following incorrect names: a....
Ch. 18.12 - Prob. 14PCh. 18.12 - List the compounds in each set from most reactive...Ch. 18.13 - Prob. 16PCh. 18.13 - What product(s) result from nitration of each of...Ch. 18.13 - Prob. 18PCh. 18.13 - What products are obtained from the reaction of...Ch. 18.15 - Give the products, if any, of each of the...Ch. 18.16 - a. Does a coupling reaction have to be used to...Ch. 18.16 - Show how the following compounds can be...Ch. 18.16 - Prob. 24PCh. 18.17 - What is the major product(s) of each of the...Ch. 18.17 - Prob. 26PCh. 18.18 - Why isn't FeBr3 used as a catalyst in the first...Ch. 18.18 - Prob. 29PCh. 18.18 - Write the sequence of steps required for the...Ch. 18.18 - Show how the following compounds can be...Ch. 18.19 - What product is formed from reaction of...Ch. 18.19 - Prob. 33PCh. 18.19 - Draw the structure of the activated ring and the...Ch. 18.20 - Prob. 35PCh. 18.20 - Prob. 36PCh. 18.20 - Diazomethane can be used to convert a carboxylic...Ch. 18.21 - Prob. 38PCh. 18.21 - Prob. 39PCh. 18.21 - Prob. 40PCh. 18.22 - Prob. 41PCh. 18 - Draw the structure for each of the following: a....Ch. 18 - Name the following:Ch. 18 - Prob. 44PCh. 18 - Prob. 45PCh. 18 - For each of the statements in Column I, choose a...Ch. 18 - What product is obtained from the reaction of...Ch. 18 - Draw the product(s) of each of the following...Ch. 18 - Rank the following substituted anilines from most...Ch. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Show how the following compounds can be...Ch. 18 - Prob. 53PCh. 18 - The compound with the 1H NMR spectrum shown below...Ch. 18 - Rank each group of compounds from most reactive to...Ch. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - For each of the following components, indicate the...Ch. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Describe two ways to prepare anisole from benzene.Ch. 18 - Prob. 62PCh. 18 - The following tertiary alkyl bromides undergo an...Ch. 18 - An aromatic hydrocarbon with a molecular formula...Ch. 18 - Show how the following compounds can be...Ch. 18 - Use the four compounds shown below to answer the...Ch. 18 - a. Rank the following esters from most reactive to...Ch. 18 - A mixture of 0.10 mol benzene and 0.10 mol...Ch. 18 - Prob. 69PCh. 18 - Prob. 70PCh. 18 - Benzene underwent a Friedel-Crafts acylation...Ch. 18 - Prob. 72PCh. 18 - Prob. 73PCh. 18 - Friedel-Crafts alkylations can be carried out with...Ch. 18 - Show how the following compounds can be prepared...Ch. 18 - Prob. 76PCh. 18 - Prob. 77PCh. 18 - a. Describe four ways the following reaction can...Ch. 18 - Propose a mechanism for each of the following...Ch. 18 - How can you prepare the following compounds with...Ch. 18 - Describe how naphthalene can he prepared from the...Ch. 18 - Using resonance contributors for the carbocation...Ch. 18 - Prob. 83PCh. 18 - What reagents are required to carry out the...Ch. 18 - Prob. 85PCh. 18 - Prob. 86PCh. 18 - Prob. 87PCh. 18 - Propose a mechanism for each of the following...Ch. 18 - P-Fluoronitrobenzene is more reactive toward...Ch. 18 - When heated with chromic acid, compound A forms...Ch. 18 - Show how the following compounds can be prepared...Ch. 18 - How can you distinguish the following compounds...Ch. 18 - Describe how mescaline can be synthesized from...Ch. 18 - Propose a mechanism for the following reaction...Ch. 18 - Propose a mechanism for each of the following...Ch. 18 - Describe how 3-methyl-1-phenyl-3-pentanol can he...Ch. 18 - An unknown compound reacts with ethyl chloride and...Ch. 18 - a. Explain why the following reaction leads to the...Ch. 18 - Explain why hydroxide ion catalyzes the reaction...Ch. 18 - Prob. 100PCh. 18 - Prob. 101PCh. 18 - a. How can aspirin be synthesized from benzene? b....Ch. 18 - Prob. 103PCh. 18 - Show how Novocain, a painkiller used frequently by...Ch. 18 - Prob. 105PCh. 18 - Saccharin, an artificial sweetener, is about 300...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Given Kp for 2 reactions. Find the Kp for the following reaction: BrCl(g)+ 1/2 I2(g) ->IBr(g) + 1/2 Cl2(g)arrow_forwardFor a certain gas-phase reaction at constant pressure, the equilibrium constant Kp is observed to double when the temperature increases from 300 K to 400 K. Calculate the enthalpy change of the reaction, Ah, using this information.arrow_forwardHydrogen bonding in water plays a key role in its physical properties. Assume that the energy required to break a hydrogen bond is approximately 8 kJ/mol. Consider a simplified two-state model where a "formed" hydrogen bond is in the ground state and a "broken" bond is in the excited state. Using this model: • Calculate the fraction of broken hydrogen bonds at T = 300 K, and also at T = 273 K and T = 373 K. • At what temperature would approximately 50% of the hydrogen bonds be broken? • What does your result imply about the accuracy or limitations of the two-state model in describing hydrogen bonding in water? Finally, applying your understanding: • Would you expect it to be easier or harder to vaporize water at higher temperatures? Why? If you were to hang wet laundry outside, would it dry more quickly on a warm summer day or on a cold winter day, assuming humidity is constant?arrow_forward
- (3 pts) Use the Kapustinskii equation to calculate the lattice enthalpy for MgBr2 anddiscuss any differences between this result and that from #4.arrow_forward(3 pts) Silver metal adopts a fcc unit cell structure and has an atomic radius of 144 pm. Fromthis information, calculate the density of silver. Show all work.arrow_forward4. (3 pts) From the information below, determine the lattice enthalpy for MgBr2. Show all work. AH/(kJ mol-¹) Sublimation of Mg(s) +148 lonization of Mg(g) +2187 to Mg2+(g) Vaporization of Br₂(1) +31 Dissociation of Br,(g) +193 Electron gain by Br(g) -331 Formation of MgBr₂(s) -524arrow_forward
- 1. (4 pts-2 pts each part) Consider the crystal structures of NaCl, ZnS, and CsCl (not necessarily shown in this order). a. For one of the three compounds, justify that the unit cell is consistent with stoichiometry of the compound. b. In each of the crystal structures, the cations reside in certain holes in the anions' packing structures. For each compound, what type of holes are occupied by the cations and explain why those particular types of holes are preferred.arrow_forward(2 pts) What do you expect to happen in a Na2O crystal if a Cl− ion replaces one of the O2−ions in the lattice?arrow_forward(2 pts) WSe2 is an ionic compound semiconductor that can be made to be p-type or n-type.What must happen to the chemical composition for it to be p-type? What must happen tothe chemical composition for it to be n-type?arrow_forward
- 8. (2 pts) Silicon semiconductors have a bandgap of 1.11 eV. What is the longest photon wavelength that can promote an electron from the valence band to the conduction band in a silicon-based photovoltaic solar cell? Show all work. E = hv = hc/λ h = 6.626 x 10-34 Js c = 3.00 x 108 m/s 1 eV 1.602 x 10-19 Jarrow_forwardA solution containing 100.0 mL of 0.155 M EDTA buffered to pH 10.00 was titrated with 100.0 mL of 0.0152 M Hg(ClO4)2 in a cell: calomel electrode (saturated)//titration solution/Hg(l) Given the formation constant of Hg(EDTA)2-, logKf= 21.5, and alphaY4-=0.30, find out the cell voltage E. Hg2+(aq) + 2e- = Hg(l) E0= 0.852 V E' (calomel electrode, saturated KCl) = 0.241 Varrow_forwardFrom the following reduction potentials I2 (s) + 2e- = 2I- (aq) E0= 0.535 V I2 (aq) + 2e- = 2I- (aq) E0= 0.620 V I3- (aq) + 2e- = 3I- (aq) E0= 0.535 V a) Calculate the equilibrium constant for I2 (aq) + I- (aq) = I3- (aq). b) Calculate the equilibrium constant for I2 (s) + I- (aq) = I3- (aq). c) Calculate the solubility of I2 (s) in water.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Characteristic Reactions of Benzene and Phenols; Author: Linda Hanson;https://www.youtube.com/watch?v=tjEqEjDd87E;License: Standard YouTube License, CC-BY
An Overview of Aldehydes and Ketones: Crash Course Organic Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=-fBPX-4kFlw;License: Standard Youtube License