A 25-L sample of ideal gas with γ = 1.67 is at 250 K and 50 kPa. The gas is compressed isothermally to one-third of its original volume, then heated at constant volume until its state lies on the adiabatic curve that passes through its original state, and then allowed to expand adiabatically to that original state. Find the net work involved. Is net work done on or by the gas?
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
Additional Science Textbook Solutions
Genetic Analysis: An Integrated Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Biology: Life on Earth (11th Edition)
Microbiology: An Introduction
Campbell Biology: Concepts & Connections (9th Edition)
Microbiology: An Introduction
- Consider these scenarios and state whether work is done by the system on the environment (SE) or by the environment on the system (ES): (a) opening a carbonated beverage; (b) filling a flat tire; (c) a sealed empty gas can expands on a hot day, bowing out the walls.arrow_forwardOne mole of an ideal gas does 3 000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine (a) the initial volume and (b) the temperature of the gas.arrow_forwardOf the following, which is not a statement of the second law of thermodynamics? (a) No heat engine operating in a cycle can absorb energy from a reservoir and use it entirely to do work, (b) No real engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs, (c) When a system undergoes a change in state, the change in the internal energy of the system is the sum of the energy transferred to the system by heat and the work done on the system, (d) The entropy of the Universe increases in all natural processes, (e) Energy will not spontaneously transfer by heat from a cold object to a hot object.arrow_forward
- Which of the following is true for the entropy change of a system that undergoes a reversible, adiabatic process? (a) S 0 (b) S = 0 (c) S 0arrow_forward(a) How long will the energy in a 1470kJ (350kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficiency of 20.0% (such as in leisurely climbing stairs)? (b) Does the time found in part (a) imply that it is easy to consume more food energy than you can reasonably expect to work off with exercise?arrow_forward(a) On a winter day, a certain house loses 5.00108J of heat to the outside (about 500,000 Btu). What is the total change in entropy due to this heat transfer alone, assuming an average indoor temperature of 21.0C and an average outdoor temperature of 5.00C ? (b) This large change in entropy implies a large amount of energy has become unavailable to do work. Where do we find more energy when such energy is lost to us?arrow_forward
- True or False: The entropy change in an adiabatic process must be zero because Q = 0.arrow_forwardYou are hired to build a geothermal power plant that absorbs heat from a hot water spring and discards heat into the surrounding air, which is at a temperature of 17°. The plant is designed for a maximum (Carnot) efficiency of 0.21. What is the temperature, in degrees Celsius, of the hot water gushing from the spring? If the rate of energy supplied to the plant by the hot-water source is 4.6 kW, what is the plant’s maximum rate of power output, in kilowatts?arrow_forwardThe diagram below depicts an ideal monatomic gas which is compressed isobarically at p = 1.38×10° Pa from state A (V = 6.32×10 m³) to 6 3 3 state B (V=3.7x10 m³) where its temperature becomes T = 305°C. Its pressure is then increased at constant volume from state B to C and finally expanded isothermally until it returns to its initial state A. How much work is done by the gas and what is its temperature when it expanded during the isothermal process? C Pc B PA = PB A VB = VC VA The temperature of the gas during the Isothermal process is 247.8 K and the work done by the gas is 2.734 kJ. The temperature of the gas during the isothermal process is 987.5°C and the work. done by the gas is 2573 kl. The temperature of the gas during the isothermal process is 714.4°C and the work done by the gas is 4.669 kJ. The temperature of the gas during the isothermal process is 521.0 K and the work done by the gas is 1358 kJ.arrow_forward
- The working substance of a certain Carnot engine is 1.70 mol of an ideal monatomic gas. During the isothermal expansion portion of this engine's cycle, the volume of the gas doubles, while during the adiabatic expansion the volume increases by a factor of 5.7. The work output of the engine is 940 J in each cycle. Compute the temperatures of the two reservoirs between which this engine operates. Express your answer using two significant figures. Enter your answers numerically separated by a comma. (TL , TH )arrow_forwardWe’ve seen that the area under a pV graph is the work done in an ideal-gas process. If the process follows a closed curve, the work is the area inside the curve. The graph as shown the gauge pressure in the lungs versus the volume of gas in the lungs for a person who is taking rapid, deep breaths. During one complete breath, the pressure-versus-volume data trace out the curve shown, in the direction of the arrows. The energy expended in one complete breath is represented by the shaded area inside the curve. If you graph pressure-versus-volume data for normal breathing, the upper and lower lines are much closer together and the volume range is much smaller. For the graph in the figure, approximately how much energy is required for one complete breath?A. 5 J B. 15 JC. 25 J D. 35 Jarrow_forwardWe’ve seen that the area under a pV graph is the work done in an ideal-gas process. If the process follows a closed curve, the work is the area inside the curve. The graph as shown the gauge pressure in the lungs versus the volume of gas in the lungs for a person who is taking rapid, deep breaths. During one complete breath, the pressure-versus-volume data trace out the curve shown, in the direction of the arrows. The energy expended in one complete breath is represented by the shaded area inside the curve. If you graph pressure-versus-volume data for normal breathing, the upper and lower lines are much closer together and the volume range is much smaller. For one cycle of normal breathing, we expect the energy expended to be for the cycle illustrated in the figure.A. more than B. the same as C. less thanarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning