The nuclear power plant at which you’re the public affairs manager has a backup gas-turbine system. The backup system produces electrical energy at the rate of 360 MW, while extracting energy from natural gas at the rate of 670 MW. The local town council has raised concern over waste thermal energy dumped into the environment. Their standards state the thermal waste power must not exceed 400 MW and that all power generation must be at least 50% efficient. Does the backup turbine meet this standard?
The nuclear power plant at which you’re the public affairs manager has a backup gas-turbine system. The backup system produces electrical energy at the rate of 360 MW, while extracting energy from natural gas at the rate of 670 MW. The local town council has raised concern over waste thermal energy dumped into the environment. Their standards state the thermal waste power must not exceed 400 MW and that all power generation must be at least 50% efficient. Does the backup turbine meet this standard?
The nuclear power plant at which you’re the public affairs manager has a backup gas-turbine system. The backup system produces electrical energy at the rate of 360 MW, while extracting energy from natural gas at the rate of 670 MW. The local town council has raised concern over waste thermal energy dumped into the environment. Their standards state the thermal waste power must not exceed 400 MW and that all power generation must be at least 50% efficient. Does the backup turbine meet this standard?
Part C
Find the height yi
from which the rock was launched.
Express your answer in meters to three significant figures.
Learning Goal:
To practice Problem-Solving Strategy 4.1 for projectile motion problems.
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.
PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems
MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model.
VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ.
SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25
Chapter 18 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY