You’re the product safety officer for a company that makes cycling accessories. You’re given a new design for a bicycle pump that includes a cylinder 32 cm long when the pump handle is all the way out. To keep the pump from getting too hot, you specify that the temperature rise should not exceed 75°C when the handle is pushed rapidly, with the outlet blocked, until the internal length of the cylinder is 16 cm. Assuming air initially at 18°C, does the pump meet your temperature-rise criterion?
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
Additional Science Textbook Solutions
Biology: Life on Earth with Physiology (11th Edition)
Microbiology: An Introduction
Genetic Analysis: An Integrated Approach (3rd Edition)
College Physics: A Strategic Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Biology (11th Edition)
- If a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forwardWhen a gas undergoes an adiabatic expansion, which of the following statements is true? (a) The temperature of the gas does not change. (b) No work is done by the gas. (c) No energy is transferred to the gas by heat. (d) The internal energy of the gas does not change. (e) The pressure increases.arrow_forwardFor a temperature increase of 10 at constant volume, what is the heat absorbed by (a) 3.0 mol of a dilute monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and (c) 15 mol of a dilute polyatomic gas?arrow_forward
- Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardA 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.00 atm and a volume of 12.0 L to a final volume of 30.0 L. (a) What is the final pressure of the gas? (b) What are the initial and final temperatures? Find (c) Q, (d) Eint, and (e) W for the gas during this process.arrow_forwardAsaparrow_forward
- A cylinder container is divided into two equal sections by thermally isolated, frictionless piston,as shown in the figure. One section contains water and the other air. The cylinder is isolated except the one face of the water section. Each section has an initial volume of 100 liter. The initial temperature of the air is 40 degees C and the water is 90 degrees C with steam quality of 10%. The water are heated slowly until the entire section of the water is filled with saturated steam. Find the final pressure and the amount of heat transported to the container. Assume: the heat transfer is a reversible process. Assume for ideal gas the following relation between p and v: (p2/p1)^((k-1)/k) = (v1/v2)^k-1 ; k=1.4arrow_forwardA tank contains one mole of nitrogen gas at a pressure of 5.20 atm and a temperature of 24.5°C. The tank (which has a fixed volume) is heated until the pressure inside triples. What is the final temperature of the gas? °C (b)A cylinder with a moveable piston contains one mole of nitrogen, again at a pressure of 5.20 atm and a temperature of 24.5°C. Now, the cylinder is heated so that both the pressure inside and the volume of the cylinder double. What is the final temperature of the gas? °Carrow_forwardTwo metal bars are made of invar and a third bar is made of aluminum. At 0°C, each of the three bars is drilled with two holes 40.0 cm apart. Pins are put through the holes to assemble the bars into an equilateral triangle as shown. (a) First ignore the expansion of the invar. Find the angle between the invar bars as a function of Celsius temperature. (b) Is your answer accurate for negative as well as positive temperatures? (c) Is it accurate for 0°C? (d) Solve the problem again, including the expansion of the invar. Aluminum melts at 660°C and invar at 1 427°C. Assume the tabulated expansion coefficients are constant. What are (e) the greatest and (f) the smallest attainable angles between the invar bars?arrow_forward
- A well-insulated 3-m * 4-m * 6-m room initially at 7°C is heated by the radiator of a steam-heating system. The radiator has a volume of 15 L and is filled with superheated vapor at 200 kPa and 200°C. At this moment both the inlet and the exit valves to the radiator are closed. A 120-W fan is used to distribute the air in the room. The pressure of the steam is observed to drop to 100 kPa after 45 min as a result of heat transfer to the room. Assuming constant specific heats for air at room temperature, determine the average temperature of air in 45 min. Assume the air pressure in the room remains constant at 100 kPa.arrow_forwardYou are asked to design a heating system for a swimming pool that is 2 m deep, 25 m long, and 25 m wide. Your client desires that the heating system be large enough to raise the water temperature from 20 to 30°C in 3 h. The rate of heat loss from the water to the air at the outdoor design conditions is determined to be 960 W/m2, and the heater must also be able to maintain the pool at 30°C at those conditions. Heat losses to the ground are expected to be small and can be disregarded. The heater considered is a natural gas furnace whose efficiency is 80 percent. What heater size (in kW input) would you recommend to your client?arrow_forwardA certain car has 14 L of liquid coolant circulating at a temperature of 95 degrees Celsius through the engine’s cooling system. Assume that, in this normal condition, the coolant completely fills the 3.5 L volume of the aluminum radiator and the 10.5 L internal cavities within the aluminum engine. When a car overheats, the radiator, engine, and coolant expand and a small reservoir connected to the radiator catches any resultant coolant overflow. Estimate how much coolant overflows to the reservoir if the system goes from 95 degrees Celsius to 106 degrees Celsius. Model the radiator and engine as hollow shells of aluminum. The coefficient of volume expansion for coolant is 410x10^-6 degrees Celsiusarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning