Fundamentals of Physics
10th Edition
ISBN: 9781118230718
Author: David Halliday
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 52P
The ceiling of a single-family dwelling in a cold climate should have an R-value of 30. To give such insulation, how thick would a layer of (a) polyurethane foam and (b) silver have to be?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The ceiling of a single-family dwelling in a cold climate should have an R-value of 30. To give such insulation, how thick would a layer of (a) polyurethane foam and (b) silver have to be?
It is often argued that the head is the most important part of the body to cover when out in cold weather. Estimate the total energy loss by radiation if a person’s head is uncovered for 19.4 min on a very cold, −15.0°C day, assuming he is bald, his skin temperature is 35.0°C, and that skin has an emissivity (in the infrared) of 97.0%. Assume that the man’s head is spherical, with a radius of 10.0 cm. The Stefan–Boltzmann constant is 5.670 × 10−8 W/ (m2·K4).
A 2.44 m wide by 1.15 m high metal plate must be insulated to prevent contact
burn injuries. If the heat transfer rate is 125 W and the temperature across the
insulation must be reduced from 88.3°C to 40.7°C, what is the minimum
thickness (in cm) of insulation required [round your final answer to two decimal
places]?
{kins = 0.035 W/m-K}
Insulation
Н
W
L
Chapter 18 Solutions
Fundamentals of Physics
Ch. 18 - The initial length L, change in temperature T, and...Ch. 18 - Figure 18-24 shows three linear temperature...Ch. 18 - Materials A, B, and C are solids that are at their...Ch. 18 - A sample A of liquid water and a sample B of ice,...Ch. 18 - Question 4 continued: Graphs b through f of Fig....Ch. 18 - Figure 18-26 shows three different arrangements of...Ch. 18 - Figure 18-27 shows two closed cycles on p-V...Ch. 18 - For which cycle in Fig. 18-27, traversed...Ch. 18 - Three different materials of identical mass are...Ch. 18 - A solid cube of edge length r, a solid sphere of...
Ch. 18 - A hot object is dropped into a thermally insulated...Ch. 18 - Suppose the temperature of a gas is 373.15 K when...Ch. 18 - Two constant-volume gas thermometers are...Ch. 18 - A gas thermometer is constructed of two...Ch. 18 - a In 1964, the temperature in the Siberian village...Ch. 18 - At what temperature is the Fahrenheit scale...Ch. 18 - On a linear X temperature scale, water freezes at...Ch. 18 - ILW Suppose that on a linear temperature scale X,...Ch. 18 - At 20C, a brass cube has edge length 30 cm. What...Ch. 18 - ILW A circular hole in an aluminum plate is 2.725...Ch. 18 - An aluminum flagpole is 33 m high. By how much...Ch. 18 - Prob. 11PCh. 18 - An aluminum-alloy rod has a length of 10.000 cm at...Ch. 18 - SSM Find the change in volume of an aluminum...Ch. 18 - When the temperature of a copper coin is raised by...Ch. 18 - ILW A steel rod is 3.000 cm in diameter at 25.00C....Ch. 18 - When the temperature of a metal cylinder is raised...Ch. 18 - SSM WWW An aluminum cup of 100 cm3 capacity is...Ch. 18 - At 20C, a rod is exactly 20.05 cm long on a steel...Ch. 18 - GO A vertical glass tube of length L = 1.280 000 m...Ch. 18 - GO In a certain experiment, a small radioactive...Ch. 18 - SSM ILW As a result of a temperature rise of 32 C,...Ch. 18 - One way to keep the contents of a garage from...Ch. 18 - SSM A small electric immersion healer is used to...Ch. 18 - A certain substance has a mass per mole of 50.0...Ch. 18 - Prob. 25PCh. 18 - What muss of butter, which has a usable energy...Ch. 18 - SSM Calculate the minimum amount of energy, in...Ch. 18 - How much water remains unfrozen after 50.2 kJ is...Ch. 18 - In a solar water heater, energy from the Sun is...Ch. 18 - A 0.400 kg simple is placed in a cooling apparatus...Ch. 18 - ILW What mass of steam at 100C must be mixed with...Ch. 18 - The specific heat of a substance varies with...Ch. 18 - Nonmetric version: a How long does a 2.0 105...Ch. 18 - GO Samples A and B are at different initial...Ch. 18 - An insulated Thermos contains l30 cm3 of hot...Ch. 18 - A 150 g copper bowl contains 220 g of water, both...Ch. 18 - A person makes a quantity of iced tea by mixing...Ch. 18 - A 0.530 kg sample of liquid water and a sample of...Ch. 18 - GO Ethyl alcohol has a boiling point of 78.0C, a...Ch. 18 - GO Calculate the specific heat of a metal from the...Ch. 18 - SSM WWW a Two 50 g ice cubes are dropped into 200...Ch. 18 - GO A 20.0 g copper ring at 0.000C has an inner...Ch. 18 - In Fig. 18-37, a gas sample expands from V0 to...Ch. 18 - GO A thermodynamic system is taken from stale A to...Ch. 18 - SSM ILW A gas within a closed chamber undergoes...Ch. 18 - Suppose 200 J of work is done on a system and 70.0...Ch. 18 - Prob. 47PCh. 18 - GO As a gas is held within a closed chamber, it...Ch. 18 - GO Figure 18-42 represents a closed cycle for a...Ch. 18 - GO A lab sample of gas is taken through cycle abca...Ch. 18 - A sphere of radius 0.500 m, temperature 27.0C, and...Ch. 18 - The ceiling of a single-family dwelling in a cold...Ch. 18 - SSM Consider the slab shown in Fig. 18-18. Suppose...Ch. 18 - If you were to walk briefly in space without a...Ch. 18 - ILW A cylindrical copper rod of length 1.2 m and...Ch. 18 - The giant hornet Vespa mandarinia japonica preys...Ch. 18 - Prob. 57PCh. 18 - A solid cylinder of radius r1 = 2.5 cm, length h1...Ch. 18 - Prob. 59PCh. 18 - GO Figure 18-46 shows the cross section of a wall...Ch. 18 - SSM A 5.0 cm slap has formed on an outdoor tank of...Ch. 18 - Leidenfrost effect. A water drop will last about 1...Ch. 18 - GO Figure 18-49 shows in cross section a wall...Ch. 18 - Prob. 64PCh. 18 - Ice has formed on a shallow pond, and a shady...Ch. 18 - GO Evaporative cooling of beverages. A cold...Ch. 18 - In the extrusion of cold chocolate from a tube,...Ch. 18 - Prob. 68PCh. 18 - Figure 18-51 displays a closed cycle for a gas....Ch. 18 - In a certain solar house, energy from the Sun is...Ch. 18 - A 0.300 kg sample is placed in a cooling apparatus...Ch. 18 - The average rate at which energy is conducted...Ch. 18 - What is the volume increase of an aluminum cube...Ch. 18 - In a series of experiment, block B is to be placed...Ch. 18 - Figure 18-54 displays a dosed cycle for a gas....Ch. 18 - Three equal-length straight rods, of aluminum,...Ch. 18 - SSM The temperature of a 0.700 kg cube of ice is...Ch. 18 - GO Icicles. Liquid water coats an active growing...Ch. 18 - SSM A sample of gas expands from an initial...Ch. 18 - Figure 18-56a shows a cylinder containing gas and...Ch. 18 - SSM A sample of gas undergoes a transition from an...Ch. 18 - Prob. 82PCh. 18 - SSM The temperature of a Pyrex disk is changed...Ch. 18 - a Calculate the rate at which body heat is...Ch. 18 - SSM A 2.50 kg Jump of aluminum is heated to 92.0C...Ch. 18 - A glass window pane is exactly 20 cm by 30 cm at...Ch. 18 - A recruit can join the semi-secret 300 F club at...Ch. 18 - A steel rod at 25.0C is bolted at both ends and...Ch. 18 - An athlete needs to lose weight and decides to do...Ch. 18 - Soon after Earth was formed, heat released by the...Ch. 18 - Prob. 91PCh. 18 - A rectangular plate of glass initially has the...Ch. 18 - Suppose that you intercept 5.0 103 of the energy...Ch. 18 - A thermometer of mass 0.0550 kg and of specific...Ch. 18 - A sample of gas expands from V1 = 1.0 m3 and p1 =...Ch. 18 - Figure 18-59 shows a composite bar of length L =...Ch. 18 - On finding your stove out of order, you decide to...Ch. 18 - The p-V diagram in the Fig. 18-60 shows two paths...Ch. 18 - A cube of edge length 6.0 106 m, emissivity 0.75,...Ch. 18 - A flow calorimeter is a device used to measure the...Ch. 18 - An object of mass 6.00 kg falls through a height...Ch. 18 - The Pyrex glass mirror in a telescope has a...Ch. 18 - The area A of a rectangular plate is ab = 1.4 m2....Ch. 18 - Consider the liquid in a barometer whose...Ch. 18 - A pendulum clock with a pendulum made of brass is...Ch. 18 - Prob. 106PCh. 18 - Prob. 107PCh. 18 - A 1700 kg Buick moving at 83 km/h brakes to a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
58. In the hammer throw, an athlete spins a heavy mass in a circle at the end of a cable before releasing it fo...
College Physics: A Strategic Approach (3rd Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Distinguish between pollination and fertilization.
Campbell Biology (11th Edition)
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
5.28 Neurofibromatosis is an autosomal dominant disorder inherited on human chromosome. Part of the analysis ma...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 2.37 m wide by 1.17 m high metal plate must be insulated to prevent contact burn injuries. If the heat transfer rate is 123 W and the temperature across the insulation must be reduced from 87.4°C to 42.7°C, what is the minimum thickness (in cm) of insulation required [round your final answer to two decimal places]? {kins = 0.036 W/m∙K}arrow_forwardA dormitory at a large university, built 50 years ago, has exterior walls constructed of L = 25-mm-thick sheathing with a thermal conductivity of k, = 0.1 W/m.K. To reduce heat losses in the winter, the university decides to encapsulate the entire dormitory by applying an L, = 25-mm-thick layer of extruded insulation characterized by k, = 0.029 W/m.K to the exterior of the original sheathing. The extruded insulation is, in turn, covered with an Lg = 5-mm-thick architectural glass with kg = 1.4 W/m.K. Determine the heat flux through the original and retrofitted walls when the interior and exterior air temperatures are T = 22°C and To -2.5°C, respectively. The inner and outer convection heat transfer coefficients are h; = 5 W/m² K and ho = 25 W/m².K, respectively. The heat flux through the original walls is i The heat flux through the retrofitted walls is tel W/m². W/m².arrow_forwardYou are pumping liquid nitrogen at a temperature of -196°C through a long, thin-walled pipe; ignore the resistance of the pipe material and assume that the outside temperature of the pipe is the same as the liquid nitrogen. The pipe has an outside diameter of 12.0 cm; and is buried in the ground (k = 0.52 W/(m-k), ground surface temperature = 18.0°C) at a depth of 3.2 meters (distance from the surface of the ground to the centerline of the pipe). To reduce the heat loss from the pipe, it is insulated with a 5.0 cm layer of cryogenic insulation, k = 0.0017 W/(m-k). Draw a sketch of this problem; draw the resistor diagram, and assuming steady-state conditions calculate the heat gain per meter length of the pipe.arrow_forward
- Inconel® refers to a class of nickel-chromium-based superalloys that are used in high-temperature applications, such as gas turbine blades. For further improvement in the performance of gas turbine engine, the outer blade surface is coated with ceramic-based thermal barrier coating (TBC). Consider a flat Inconel® plate, with a thickness of 12 mm, is coated with a layer of TBC, with a thickness of 300 mm, on its surface. At the interface between the Inconel® and the TBC, the thermal contact conductance is 10,500 W/m2∙K. The thermal conductivities of the Inconel® and the TBC are 25 W/m∙K and 1.5 W/m∙K, respectively. The plate is in a surrounding of hot combustion gasses at 1500°C, and the convection heat transfer coefficient is 750 W/m2∙K. Determine the temperature at the mid-plane of the Inconel® plate, if the outer surface temperature is 1200°C.arrow_forwardA walrus transfers energy by conduction through its blubber at the rate of 150 W when immersed in −1.00ºC water. The walrus’s internal core temperature is 37.0ºC , and it has a surface area of 2.00 m2 . What is the average thickness of its blubber, which has the conductivity of fatty tissues without blood?arrow_forwardA 1.82 m wide by 1.11 m high metal plate must be insulated to prevent contact burn injuries. If the heat transfer rate is 136 W and the temperature across the insulation must be reduced from 87.3°C to 40.3°C, what is the minimum thickness (in cm) of insulation required [round your final answer to two decimal places]? {kins = 0.031 W/m∙K}arrow_forward
- The emissivity of a surface coated with aluminum oxide can be approximated to be 0.15 for radiation at wavelengths less than 5 mm and 0.9 for radiation at wavelengths greater than 5 mm. Determine the average emissivity of this surface at (a) 5800 K and (b) 300 K. What can you say about the absorptivity of this surface for radiation coming from sources at 5800 K and 300 K?arrow_forwardA walrus transfers energy by conduction through its blubber at the rate of 150 W when immersed in −1.00ºC water. The walrus’s internal core temperature is 37.0ºC , and it has a surface area of 2.00 m2 . What is the average thickness of its blubber, which has the conductivity of fattytissues without blood?arrow_forwardA 0.3-cm-thick, 12-cm-high, and 18-cm-long circuit board houses 80 closely spaced logic chips on one side, each dissipating 0.06 W. The board is impregnated with copper fillings and has an effective thermal conductivity of 16 W/m·K. All the heat generated in the chips is conducted across the circuit board and is dissipated from the back side of the board to the ambient air. Determine the temperature difference between the two sides of the circuit board.arrow_forward
- An electric stove burner has surface area 325 cm² and emissivity e = 1. The burner consumes 1500 W and is at 900 K. If room temperature is 300 K, what fraction of the burner's heat loss is from radiation?arrow_forwardInconel® refers to a class of nickel-chromium-based superalloys that are used in high-temperature applications, such as gas turbine blades. For further improvement in the performanceof gas turbine engine, the outer blade surface is coated with ceramic-based thermal barrier coating (TBC). Consider a flat Inconel® plate, with a thickness of 12 mm, is coated with a layer of TBC, with a thickness of 300 mm, on its surface. At the interface between the Inconel® and the TBC, the thermal contact conductance is 10,500 W/m2∙K. The thermal conductivities of the Inconel® and the TBC are 25 W/m∙K and 1.5 W/m∙K, respectively. The plate is in a surrounding of hot combustiongasses at 1500°C, and the convection heat transfer coefficient is 750 W/m2∙K. Determine the temperature at the mid-plane of the Inconel® plate if the outer surface temperature is 1200°C.arrow_forwardA plate (74 + 0.3) m long and (74 + 0.1) m wide, with a thickness of (74 + 12) mm is made from stainless steel ( k= 16 W/mK). The temperature at the bottom surface of the plate is 100 °? maintained by an electrical heater supplied by 200 V and 0.25 A. In a steady-state condition, assuming that the plate is perfectly insulated on all sides except top surface, find temperature at the top surface of the plate.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY