A sample A of liquid water and a sample B of ice, of identical mass, are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure 18-25a is a sketch of the temperature T of the samples versus time t. (a) Is the equilibrium temperature above, below, or at the freezing point of water? (b) In reaching equilibrium, does the liquid partly freeze, fully freeze, or undergo no freezing? (c) Does the ice partly melt, fully melt, or undergo no melting?
Figure 18-25 Question 4 and 5.
Trending nowThis is a popular solution!
Chapter 18 Solutions
Fundamentals of Physics
Additional Science Textbook Solutions
Chemistry
College Physics: A Strategic Approach (3rd Edition)
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
Organic Chemistry (8th Edition)
Microbiology with Diseases by Body System (5th Edition)
Principles of Anatomy and Physiology
- For a temperature increase of 10 at constant volume, what is the heat absorbed by (a) 3.0 mol of a dilute monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and (c) 15 mol of a dilute polyatomic gas?arrow_forwardAn aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardAt 25.0 m below the surface of the sea, where the temperature is 5.00C, a diver exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the sea is 20.0C, what is the volume of the bubble just before it breaks the surface?arrow_forward
- An aluminum rod 0.500 m in length and with a cross sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 3(H) K. (a) If one-halt of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool, (b) If the circular surface of the upper end of the rod is maintained at 300 K. what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 YV/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardA sample of a solid substance has a mass m and a density 0 at a temperature T0. (a) Find the density of the substance if its temperature is increased by an amount T in terms of the coefficient of volume expansion b. (b) What is the mass of the sample if the temperature is raised by an amount T?arrow_forwardTwo concrete spans that form a bridge of length L are placed end to end so that no room is allowed for expansion (Fig. P16.63a). If a temperature increase of T occurs, what is the height y to which the spans rise when they buckle (Fig. P16.63b)?arrow_forward
- Ice of mass 12.8 kg at 0°C is placed in an ice chest. The ice chest has 2.7 cm thick walls of thermal conductivity 0.07 W/m·K and a surface area of 1.29 m2. Express your answers with appropriate mks units. (a) How much heat must be absorbed by the ice during the melting process? (b) If the outer surface of the ice chest is at 39° C, how long will it take for the ice to melt?arrow_forward(a) Two 54 g ice cubes are dropped into 450 g of water in a thermally insulated container. If the water is initially at 17°C, and the ice comes directly from a freezer at -11°C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? The specific heat of water is 4186 J/kg·K. The specific heat of ice is 2220 J/kg·K. The latent heat of fusion is 333 kJ/kg.arrow_forwardIf a container of fuel is thought to release a total of 11,000 kJ of energy into a room with a volume of 30,000 L, and all of that energy was contained as heat in the air molecules only (i.e. no heat losses anywhere), what would be the average temperature increase in °C of the air molecules. Assume that air has a constant heat capacity of 1 kJ/kg.K and an average molar mass of 28.9 g/mol. R = 0.082 L.atm/K.mol. To help the calculations, assume that the room starts at 25°C (298K) and any heating of the air does not affect the number of moles or pressure in the room (i.e., n and P are also constant). Do not include commas, scientific notation, spaces, or the units of °C in the answer.arrow_forward
- A hot object is dropped into a thermally insulated container of water, and the object and water are then allowed to come to thermal equilibrium. The experiment is repeated twice, with different hot objects. All three objects have the same mass and initial temperature, and the mass and initial temperature of the water are the same in the three experiments. For each of the experiments, Fig. 18-29 gives graphs of the temperatures T of the object and the water versus time t. Rank the graphs according to the specific heats of the objects, greatest first.arrow_forwardA solid object has a volume density ρ0 at a temperature of 315 K. The coefficient of volume expansion for the material of which it is made is 7.00 × 10-5 K-1. What will be its density (in terms of ρ0 ) at a temperature of 425 K, assuming that it does not melt and that its thermal properties do not change with temperature?arrow_forwardA metal rod 50 cm long will expand by 0.075 cm if its temperature is from 0°C to 100°C. while metal rod B will expand by 0.045 cm if it is set at the same temperature and length. If you connect metal rods a and b where the total length of the two connections is 50 cm, it will expand by 0.065 cm. if shocked from 0 °C to 100 °C. calculate the length of each piece of metal that makes up this combined rod.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning