Concept explainers
BIO EST Axon capacitance The long thin cylindrical axon of a nerve carries nerve impulses. The axon can be as long as 1 m. (a) Estimate the capacitance of a 1.0-m-long axon of radius
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
College Physics
Additional Science Textbook Solutions
An Introduction to Thermal Physics
The Cosmic Perspective
Essential University Physics: Volume 1 (3rd Edition)
Life in the Universe (4th Edition)
College Physics (10th Edition)
Conceptual Integrated Science
- Three capacitors are connected to a battery as shown in Figure P20.50. Their capacitances are C1 = 3C, C2 = C, and C3 = 5C. (a) What is the equivalent capacitance of this set of capacitors? (b) State the ranking of the capacitors according to the charge they store from largest to smallest. (c) Rank the capacitors according to the potential differences across them from largest to smallest. (d) What If? Assume C3 is increased. Explain what happens to the charge stored by each capacitor. Figure P20.50arrow_forward(i) A battery is attached to several different capacitors connected in parallel. Which of the following statements is true? (a) All capacitors have the same charge, and the equivalent capacitance is greater than the capacitance of any of the capacitors in the group, (b) The capacitor with the largest capacitance carries the smallest charge, (c) The potential difference across each capacitor is the same, and the equivalent capacitance is greater than any of the capacitors in the group. (d) The capacitor with the smallest capacitance carries the largest charge. (e) The potential differences across the capacitors are the same only if the capacitances are the same, (ii) The capacitors are reconnected in series, and the combination is again connected to the battery. From the same choices, choose the one that is true.arrow_forwardTrue or False? (a) From the definition of capacitance C = Q/V it follows that an uncharged capacitor has a capacitance of zero. (b) As described by the definition of capacitance, the potential difference across an uncharged capacitor is zero.arrow_forward
- Unreasonable Results (a) On a particular day, it takes 9.60 103 J of electric energy to start a truck’s engine. Calculate the capacitance of a capacitor that could store that amount of energy at 12.0 V. (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forwardA nervous physicist worries that the two metal shelves of his wood frame bookcase might obtain a high voltage if charged by static electricity, perhaps produced by friction. (a) What is the capacitance of the empty shelves if they have area 1.00102 m2 and are 0.200 m apart? (b) What is the voltage between them it opposite charges of magnitude 2.00 nC are placed on them? (C) To show that this voltage poses a small hazard, calculate the energy stored.arrow_forwardA capacitor stores charge Q at a potential difference V. What happens if the voltage applied to a capacitor by a battery is doubled to 2 V? (a) The capacitance falls to half its initial value, and the charge remains the same. (b) The capacitance and the charge both fall to half their initial values. (c) The capacitance and the charge both double. (d) The capacitance remains the same, and the charge doubles.arrow_forward
- A capacitor is constructed from two square, metallic plates of sides and separation d. Charges +Q and Q are placed on the plates, and the power supply is then removed. A material of dielectric constant K is inserted a distance x into the capacitor as shown in Figure P20.85. Assume d is much smaller than x. (a) Find the equivalent capacitance of the device. (b) Calculate the energy stored in the capacitor. (c) Find the direction and magnitude of the force exerted by the plates on the dielectric. (d) Obtain a numerical value for the force when x = /2, assuming = 5.00 cm, d = 2.00 mm, the dielectric is glass ( = 4.50), and the capacitor was charged to 2.00 103 V before the dielectric was inserted. Suggestion: The system can be considered as two capacitors connected in parallel. Figure P20.85arrow_forwardA variable air capacitor used in a radio tuning circuit is made of N semicircular plates, each of radius R and positioned a distance d from its neighbors, to which it is electrically connected. As shown in Figure P20.38, a second identical set of plates is enmeshed with the first set. Each plate in the second set is halfway between two plates of the first set. The second set can rotate as a unit. Determine the capacitance as a function of the angle of rotation , where = 0 corresponds to the maximum capacitance. Figure P20.38arrow_forwardAn air-filled capacitor is made from two flat parallel plates 1.0 mm apart. The inside area of each plate is 8.0cm2. (a) What is the capacitance of this set of plates? (b) If the region between the plates is filled with a material whose dielectric constant is 6.0, what is the new capacitance?arrow_forward
- A parallel-plate capacitor is charged and then is disconnected from the battery. By what factor does the stored energy change when the plate separation is then doubled? (a) It becomes four times larger. (b) It becomes two times larger. (c) It stays the same. (d) It becomes one-half as large. (e) It becomes one-fourth as large.arrow_forwardCalculate the equivalent capacitance between points a and b in Figure P26.77. Notice that this system is not a simple series or parallel combination. Suggestion: Assume a potential difference v between [joints a and b. Write expressions for vab in terms of the charges and capacitances for the various possible pathways from a to b and require conservation of charge for those capacitor plates that are connected to each other.arrow_forwardA pair of capacitors with capacitances CA = 3.70 F and CB = 6.40 F are connected in a network. What is the equivalent capacitance of the pair of capacitors if they are connected a. in parallel and b. in series?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning