Electrostatic precipitator (esp) Electrostatic precipitators are a common form of air-cleaning device ESPs are used to remove particle emissions from smoke moving up smokestacks in coal and oil-fired electricity-generating plants and pollutants from the boilers in oil refineries. You can buy portable ESPs of whole-house ESPs that connect to the cold-air return on the furnace. These devices remove about 95% of dirt and 85% of microscopic particles from the air.
A basic electrostatic precipitator contains a negatively charged horizontal metal grid (made of thin wires) and a stack of large flat, vertically oriented metal collecting plates, with the plates typically spaced about 1 cm apart (only two plates are shown in Figure 18.30). Air flows across the charged grid of wires and then passes between the plates. A large negative potential difference (tens of thousands of volts) is applied between the wires and the plates, creating a strong electric field that ionizes particles in the air around the thin wires. Negatively charged smoke particles flow upward between the plates. The charged particles are attracted to and stick to the oppositely charged plates and are thus removed from the moving gas.
Why are the smoke particles attracted to the closely spaced plates?
a. The particles are negatively charged.
b. The particles are positively charged.
c. The plates are positively charged.
d. The plates are negatively charged.
e. a and c
f. b and c
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
College Physics
Additional Science Textbook Solutions
Applied Physics (11th Edition)
The Cosmic Perspective
College Physics
College Physics: A Strategic Approach (3rd Edition)
Conceptual Physics (12th Edition)
Conceptual Physical Science (6th Edition)
- Review. A molecule of DNA (deoxyribonucleic acid) is 2.17 m long. The ends of the molecule become singly ionized: negative on one end, positive on the other. The helical molecule acts like a spring and compresses 1.00% upon becoming charged. Determine the effective spring constant of the molecule.arrow_forwardIn different experimental trials, an electron, a proton, or a doubly charged oxygen atom (O--), is fired within a vacuum tube. The particle's trajectory carries it through a point where the electric potential is 40.0 V and then through a point at a different potential. Rank each of the following cases according to the change in kinetic energy of the particle over this part of its flight from the largest increase to the largest decrease in kinetic energy. In your ranking, display any cases of equality, (a) An electron moves from 40.0 V to 60.0 V. (b) An electron moves front 40.0 V to 20.0 V. (c) A proton moves from 40.0 V to 20.0 V'. (d) A proton moves from 40.0 V to 10.0 V. (e) An O-- ion mines from 40.0 V to 60.0 V.arrow_forwardTo form a helium atom, an alpha particle that contains two protons and two neutrons is fixed at one location, and two electrons are brought in from far away, one at a time. The first electron is placed at 0.6001010 m from the alpha particle and held there while the second electron is brought to 0.6001010 m from the alpha particle on the other side from the first electron. See die final configuration below, (a) How much work is done in each step? (b) What is the electrostatic energy of die alpha particle and two electrons in the final configuration?arrow_forward
- The liquid-drop model of the atomic nucleus suggests high-energy oscillations of certain nuclei can split the nucleus into two unequal fragments plus a few neutrons. The fission products acquire kinetic energy from their mutual Coulomb repulsion. Assume the charge is distributed uniformly throughout the volume of each spherical fragment and. immediately before separating each fragment is at rest and their surfaces are in contact. The electrons surrounding the nucleus can be ignored. Calculate the electric potential energy (in electron volts) of two spherical fragments from a uranium nucleus having the following charges and radii: 38e and 5.50 10-15 m. and 54e and 6.20 10-15 m.arrow_forwardIntegrated Concepts A lightning bolt strikes a tree, moving 20.0 C of charge through a potential difference of 1.00102 MV. (a) What energy was dissipated? (b) What mass of water could be raised from 15°C to the boiling point and then boiled by this energy? (c) Discuss the damage that could be caused to the tree by the expansion of the boiling steam.arrow_forwardThe first Leyden jar was probably discovered by a German clerk named E. Georg von Kleist. Because von Kleist was not a scientist and did not keep good records, the credit for the discovery of the Leyden jar usually goes to physicist Pieter Musschenbroek from Leyden, Holland. Musschenbroek accidentally discovered the Leyden jar when he tried to charge a jar of water and shocked himself by touching the wire on the inside of the jar while holding the jar on the outside. He said that the shock was no ordinary shock and his body shook violently as though he had been hit by lightning. The energy from the jar that passed through his body was probably around 1 J, and his jar probably had a capacitance of about 1 nF. a. Estimate the charge that passed through Musschenbroeks body. b. What was the potential difference between the inside and outside of the Leyden jar before Musschenbroek discharged it?arrow_forward
- Integrated Concepts: A 12.0 V battery-operated bottle warmer heats 50.0 g of glass, 2.50 102 g of baby formula, and 2.00 102 g of aluminum from 20.0°C to 90.0°C. (a) How much charge is moved by the battery? (b) How many electrons per second flow if it takes 5.00 mm to warm the formula? (Hint: Assume that the specific heat of baby formula is about the same as the specific heat of water.)arrow_forwardUnreasonable Results (a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graaff terminal? (b) What is unreasonable about this result? (C) Which assumptions are responsible?arrow_forwardLightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P25.52. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?arrow_forward
- A simple and common technique for accelerating electrons is shown in Figure 18.55, where there is a uniform electric field between two plates. Electrons are released, usually from a hot filament, near the negative plate, and there is a small hole in the positive plate that allows the electrons to continue moving. (a) Calculate the acceleration of the electorn if the field strength is 2.50104 N/C. (b) Explain why the electron will not be pulled back to the positive plate once it moves through the hole.arrow_forwardMembrane walls of living cells have surprisingly large electric fields across them due to separation of ions. (Membranes are discussed in some detail in Nerve Conduction—Electrocardiograms.) What is the voltage across an 8.00 nm—thick membrane if the electric field strength across it is 5.50 MV/m? You may assume a uniform electric field.arrow_forwardUsing Figure 18.43, explain, in terms of Coulomb's law, why a polar molecule (such as in Figure 18.43) is attracted by both positive and negative charges Figure 18.43 Schematic representation of the outer electron cloud of a neutral water molecule. The electrons spend more time near the oxygen than the hydrogens, giving a permanent charge separation as shown. Water is thus a polar molecule. It is more easily affected by electrostatic forces thanarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning