
College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 5MCQ
Two identical positive charges are located at a distance d from each other. Where are both the →E field and the electric potential zero?
a. exactly between the charges
b. at a distance d from both charges (all three charges making an equilateral triangle)
c. Both a and b are correct.
d. None of these choices is correct.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure.
A
Both spheres have the same charge of 6.80 nC, and are in static equilibrium when
=
4.95°. What is L (in m)? Assume the cords are massless.
0.150
Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your
Coulomb force equation. m
(b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case?
13.6
☑
Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nC
A proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 10³ N/C. Ignore any gravitational effects.
(a) Find the time interval required for the proton to travel 6.00 cm horizontally.
1.15e-7
☑
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. ns
(b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.)
5.33e-3
☑
Your response is off by a multiple of ten. mm
(c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally.
| ↑ +
jkm/s
A proton moves at 5.20 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 103 N/C. Ignore any gravitational effects.
(a) Find the time interval required for the proton to travel 6.00 cm horizontally.
(b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.)
Chapter 18 Solutions
College Physics
Ch. 18 - Review Question 18.1 How do you estimate the...Ch. 18 - Review Question 18.2 You have a point-like object...Ch. 18 - Review Question 18.3 Compare the work needed to...Ch. 18 - Review Question 18.4 Imagine that you have an...Ch. 18 - Review Question 18.5 In this section you read that...Ch. 18 - Review Question 18.6 What are the differences...Ch. 18 - Review Question 18.7 A parallel plate capacitor...Ch. 18 - Review Question 18.8 Why do heart contractions...Ch. 18 - 1 What does the field at point A, which is a...Ch. 18 - Why can you shield an object from an external...
Ch. 18 - If you place a block made of a conducting material...Ch. 18 - 4. If you place a block made of a dielectric...Ch. 18 - 5. Two identical positive charges are located at a...Ch. 18 - An electric dipole is placed between the...Ch. 18 - 7. A positive charge is fixed at some distance d...Ch. 18 - Figure Q18.8 shows E field lines in a region of...Ch. 18 - How do we use the model of the electric field to...Ch. 18 - Describe a procedure to determine the E field at...Ch. 18 - What does it mean if the E field at a certain...Ch. 18 - A very small positive charge is placed at one...Ch. 18 - 13. How do we create an E field with parallel...Ch. 18 - 14. Draw a sketch of the field lines caused by...Ch. 18 - 15. Draw a sketch of the field lines caused by...Ch. 18 - 16. Jim thinks that E field lines are the paths...Ch. 18 - Can E field lines cross? Explain why or why not.Ch. 18 - An electron moving horizontally from left to right...Ch. 18 - 19. (a) What does it mean if the electric...Ch. 18 - 20. Explain how grounding works.
Ch. 18 - 21. Explain how shielding works.
Ch. 18 - 22. Explain the difference between the microscopic...Ch. 18 - Explain why, for charged objects submerged in a...Ch. 18 - 24. What does it mean if the dielectric constant k...Ch. 18 - What is the dielectric constant of a metal?Ch. 18 - Describe the relation between the quantities E...Ch. 18 - If the V field in a region is constant, what is...Ch. 18 - 28. Why are uncharged pieces of a dielectric...Ch. 18 - 29. Draw equipotential surfaces and label them in...Ch. 18 - Show a charge arrangement and a point in space...Ch. 18 - 31. Explain what happens when you place a...Ch. 18 - (a) Explain what happens when you place a...Ch. 18 - 33. Explain why the excess charge on an electrical...Ch. 18 - Draw a microscopic representation of the charge...Ch. 18 - 1. * (a) Construct a graph of the magnitude of the...Ch. 18 - * A uranium nucleus has 92 protons. (a) Determine...Ch. 18 - 3. The electron and the proton in a hydrogen atom...Ch. 18 - * Use the superposition principle to draw E field...Ch. 18 - 5. * Use the superposition principle to draw ...Ch. 18 - * E field lines for a field created by an...Ch. 18 - 7. * Two objects with charges C are 50 cm from...Ch. 18 - 8. * charged object is 6.0 cm along a horizontal...Ch. 18 - 9. ** charged object is 4.0 cm along a horizontal...Ch. 18 - 10. **A distance d separates two objects, each...Ch. 18 - 11. * A point-like charged object with a charge +...Ch. 18 - 12. * A 3.0-g aluminum foil ball with a charge of ...Ch. 18 - 13. ** (a) If the string in the previous problem...Ch. 18 - * EST Using Earths E field for flight Earth has an...Ch. 18 - * An electron moving with a speed v0 enters a...Ch. 18 - 10-9 C hangs freely from a 1.0-m-long thread. What...Ch. 18 - 17. A 0.50-g oil droplet with charge is in a...Ch. 18 - 19. * Equation Jeopardy 1 The equations below...Ch. 18 - * Equation Jeopardy 2 The equations below describe...Ch. 18 - 21. During a lightning flash. of charge moves...Ch. 18 - 22. * (a) Construct a graph of the V field created...Ch. 18 - * A horizontal distance d separates two objects...Ch. 18 - * Two objects with charges qand+q are separated by...Ch. 18 - * Four objects with the same charge q are placed...Ch. 18 - 26. Spark jumps to nose An electric spark jumps...Ch. 18 - 27. * Two charged point-like objects are...Ch. 18 - BIO Electric field in body cell The electric...Ch. 18 - * Equation Jeopardy 3 The equation below describes...Ch. 18 - 31. * Equation Jeopardy 4 The equation below...Ch. 18 - 32. * While a sphere with positive charge remains...Ch. 18 - 33. * Figure P18.33 shows field lines in a region...Ch. 18 - 34. * A metal sphere has no charge on it. A...Ch. 18 - 35. ** EST A Van de Graaff generator of radius...Ch. 18 - ** A metal ball of radius R1 has a charge Q. Later...Ch. 18 - 37. * Positively charged metal sphere A is placed...Ch. 18 - *Two small metal spheres A and B have different...Ch. 18 - 39. * An electric dipole such as a water molecule...Ch. 18 - 10-7C at its head and an equal magnitude negative...Ch. 18 - 41. BIO Body cell membrane electric field (a)...Ch. 18 - 42. ** Earth's electric field Earth has an...Ch. 18 - 43. You have a parallel plate capacitor. (a)...Ch. 18 - 44. * A capacitor of capacitance C with a vacuum...Ch. 18 - 45. * A capacitor of capacitance C with a vacuum...Ch. 18 - How does the capacitance of a parallel plate...Ch. 18 - BIO EST Axon capacitance The long thin cylindrical...Ch. 18 - 48. ** Sphere capacitance A metal sphere of radius...Ch. 18 - * BIO EST Capacitance of red blood cell Assume...Ch. 18 - BIO Defibrillator During ventricular fibrillation...Ch. 18 - * EST The dielectric strength of air is 3106V/m....Ch. 18 - * Charged cloud causes electric field on Earth The...Ch. 18 - *BIO Hearts dipole charge The heart has a dipole...Ch. 18 - 55. * In a hot water heater, water warms when...Ch. 18 - 56. ** EST Lightning warms water A lightning flash...Ch. 18 - 57 * Four charged particles A, B, C, and D are...Ch. 18 - 59. ** A small object of unknown mass and charge...Ch. 18 - 61. * BIO Electrophoresis Electrophoresis is used...Ch. 18 - 62. * BIO Energy stored in axon electric field An...Ch. 18 - BIO Electric discharge by eels In several aquatic...Ch. 18 - BIO Electric discharge by eels In several aquatic...Ch. 18 - BIO Electric discharge by eels In several aquatic...Ch. 18 - BIO Electric discharge by eels In several aquatic...Ch. 18 - BIO Electric discharge by eels In several aquatic...Ch. 18 - BIO Electric discharge by eels In several aquatic...Ch. 18 - Electrostatic precipitator (esp) Electrostatic...Ch. 18 - Electrostatic precipitator (esp) Electrostatic...Ch. 18 - Electrostatic precipitator (esp) Electrostatic...Ch. 18 - Electrostatic precipitator (esp) Electrostatic...Ch. 18 - Electrostatic precipitator (esp) Electrostatic...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The genes dumpy (dp), clot (cl), and apterous (ap) are linked on chromosome II of Drosophila. In a series of tw...
Concepts of Genetics (12th Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
a. Which compound has the stretching vibration for its carbonyl group at the highest frequency: acetyl chloride...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The figure below shows the electric field lines for two charged particles separated by a small distance. 92 91 (a) Determine the ratio 91/92. 1/3 × This is the correct magnitude for the ratio. (b) What are the signs of q₁ and 92? 91 positive 92 negative ×arrow_forwardPlease help me solve this one more detail, thanksarrow_forwardA dielectric-filled parallel-plate capacitor has plate area A = 20.0 ccm2 , plate separaton d = 10.0 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 12.5 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Find the energy U1 of the dielectric-filled capacitor. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor is half-filled with the dielectric. The capacitor is now disconnected from the battery, and the dielectric plate is slowly removed the rest of the way out of the capacitor. Find the new energy of the capacitor, U3. In the process of removing the remaining portion of the dielectric from the disconnected capacitor, how much work W is done by the external agent acting on the dielectric?arrow_forward
- In (Figure 1) C1 = 6.00 μF, C2 = 6.00 μF, C3 = 12.0 μF, and C4 = 3.00 μF. The capacitor network is connected to an applied potential difference Vab. After the charges on the capacitors have reached their final values, the voltage across C3 is 40.0 V. What is the voltage across C4? What is the voltage Vab applied to the network? Please explain everything in steps.arrow_forwardI need help with these questions again. A step by step working out with diagrams that explains more clearlyarrow_forwardIn a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the direction angle of the electric field at the point in the region that has cordinates x = 2.50 m, y = 0.400 m, and z = 0. Please explain. The answer is not 60, 120, or 30.arrow_forward
- An infinitely long line of charge has linear charge density 4.00×10−12 C/m . A proton (mass 1.67×10−−27 kg, charge +1.60×10−19 C) is 18.0 cm from the line and moving directly toward the line at 4.10×103 m/s . How close does the proton get to the line of charge?arrow_forwardat a certain location the horizontal component of the earth’s magnetic field is 2.5 x 10^-5 T due north A proton moves eastward with just the right speed so the magnetic force on it balances its weight. Find the speed of the proton.arrow_forwardExample In Canada, the Earth has B = 0.5 mT, pointing north, 70.0° below the horizontal. a) Find the magnetic force on an oxygen ion (O) moving due east at 250 m/s b) Compare the |FB| to |FE| due to Earth's fair- weather electric field (150 V/m downward).arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.20 µC, and L = 0.810 m). Calculate the total electric force on the 7.00-µC charge. What is the magnitude , what is the direction?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 2.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning


Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY