(a)
Interpretation:
The value of
Concept Introduction:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The mathematical expression for the standard enthalpy change value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
Spontaneity depends upon the temperature and also depends upon the sign of free energy change.
The mathematical expression for
If both
When the magnitude of
Therefore, reaction is non- spontaneous at low temperature and spontaneous at high temperature.
(a)
Answer to Problem 3E
Explanation of Solution
The given reaction is:
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, in below formula.
The value of standard enthalpy for
The value of standard enthalpy for
The value of standard enthalpy for
Put the values, in below formula.
The value of standard Gibbs free energy for
The value of standard Gibbs free energy for
The value of standard Gibbs free energy for
Put the values, in below formula.
(b)
Interpretation:
Whether the reaction is spontaneous or not should be determined.
Concept Introduction:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The mathematical expression for the standard enthalpy change value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
Spontaneity depends upon the temperature and also depends upon the sign of free energy change.
The mathematical expression for
If both
When the magnitude of
Therefore, reaction is non- spontaneous at low temperature and spontaneous at high temperature.
(b)
Answer to Problem 3E
For the given reaction,
Explanation of Solution
The given reaction is:
From part (a):
The negative value of Gibbs free energy represents the given reaction is spontaneous.
(c)
Interpretation:
The temperature at which reaction is spontaneous at standard conditions should be determined by considering
Concept Introduction:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The mathematical expression for the standard enthalpy change value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
Spontaneity depends upon the temperature and also depends upon the sign of free energy change.
The mathematical expression for
If both
When the magnitude of
Therefore, reaction is non- spontaneous at low temperature and spontaneous at high temperature.
(c)
Answer to Problem 3E
The temperature at which reaction is spontaneous must be greater than
Explanation of Solution
The given reaction is:
From part (a)
Here, sign of
Put the values,
Now,
Let
Since, 1 Kilojoule = 1000 Joule
The process is spontaneous when
Want to see more full solutions like this?
Chapter 18 Solutions
EBK CHEMICAL PRINCIPLES
- Consider the reaction: H2S(g)+SO2(g)3S(g)+2H2O(l) for which H is 233 kJ and S is 424 J/K. a. Calculate the free energy change for the reaction (G) at 393 K. b. Assuming H and S do not depend on temperature, at what temperatures is this reaction spontaneous?arrow_forwardThe Ostwald process for the commercial production of nitric acid involves three steps: 4NH3(g)+5O2(g)825CPt4NO(g)+6H2O(g)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(l)+NO(g) a. Calculate H, S,G and K (at 298 K) for each of the three steps in the Ostwald process (see Appendix 4). b. Calculate the equilibrium constant for the first step at 825C, assuming H and S do not depend on temperature. c. Is there a thermodynamic reason for the high temperature in the first step, assuming standard conditions?arrow_forwardOne of the reactions that destroys ozone in the upper atmosphere is NO(g)+O3(g)NO2(g)+O2(g) Using data from Appendix 4, calculate G and K (at 298 K) for this reaction.arrow_forward
- Using values of fH and S, calculate the standard molar free energy of formation, fG, for each of the following: (a) Ca(OH)2(s) (b) Cl(g) (c) Na2CO3(s) Compare your calculated values of fG with those listed in Appendix L. Which of these formation reactions are predicted to be product-favored at equilibrium at 25 C?arrow_forwarda Calculate K1, at 25C for sulfurous acid: H2SO3(aq)H+(aq)+HSO3(aq) b Which thermodynamic factor is the most significant in accounting for the fact that sulfurous acid is a weak acid? Why?arrow_forwardConsider the reaction Fe2O3(s)+3H2(g)2Fe(s)+3H2O(g) a. Use Gf values in Appendix 4 to calculate G for this reaction. b. Is this reaction spontaneous under standard conditions at 298 K? c. The value of H for this reaction is 100. kJ. At what temperatures is this reaction spontaneous at standard conditions? Assume that H and S do not depend on temperature.arrow_forward
- The major industrial use of hydrogen is in the production of ammonia by the Haber process: 3H2(g)+N2(g)2NH3(g) a. Using data from Appendix 4, calculate H, S, and G for the Haber process reaction. b. Is the reaction spontaneous at standard conditions? c. At what temperatures is the reaction spontaneous at standard conditions? Assume H and S do not depend on temperature.arrow_forwardUsing data from Appendix 4, calculate G for the reaction NO(g)+O3(g)NO2(g)+O2(g) for these conditions: T=298KPNO=1.00106atm,PO3=2.00106atmPNO2=1.00107atm,PO2=1.00103atmarrow_forwardCalculate and G for the reaction 2H2O(l) 2H2(g) + O2(g) at 298 K. Using thermodynamic data in Appendix 4, Estimate and G at 0C and 90.C. Assume H and S do not depend on temperature.arrow_forward
- Consider the reaction of 2 mol H2(g) at 25C and 1 atm with 1 mol O2(g) at the same temperature and pressure to produce liquid water at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forwardUsing data from Appendix 4, calculate H, S and G for the following reactions that produce acetic acid: Which reaction would you choose as a commercial method for producing acetic acid (CH3CO2H) at standard conditions? What temperature conditions would you choose for the reaction? Assume H and S do not depend on temperature.arrow_forwardUsing values of fH and S, calculate rG for each of the following reactions at 25 C. (a) 2 Na(s) + 2 H2O() 2 NaOH(aq) + H2(g) (b) 6 C(graphite) + 3 H2(g) C6H6() Which of these reactions is (are) predicted to be product-favored at equilibrium? Are the reactions enthalpy- or entropy-driven?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning