EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 8220101425812
Author: DECOSTE
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 68E
Interpretation Introduction
Interpretation:
The maximum
Concept Introduction:
The enthalpy change, ΔH for a reaction is essentially the heat flow of the reaction taking place at constant pressure.
The change in enthalpy for a given reaction can be deduced from the difference in the total number of bonds that are broken (reactants) and the total number of bonds formed (products)
The energy (E) of a photon of wavelength (λ) and frequency (ν) is given by the Planck's equation:
Here,
h = Planck's constant = 6.626x10-34 Js
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hydrazine, N2H4, burns in oxygen as follows:
N2H4 + O2 → N2 + 2H2O
[The bond energies in kJ/mol are: N-H = 388; N-N 163; N≡N 944; O-H 463; O=O 496]
Draw the chemical structures of the reactants and products and
give the formula to calculate enthalpy change in a reaction, ΔH.
what is be2+ valence electron configuration?
Use Born-Mayer equation to calculate the lattice energy for PbS (it crystallizes in theNaCl structure). Then, use the Born–Haber cycle to obtain the value of lattice energy for PbS.You will need the following data following data : ΔH Pb(g) = 196 kJ/mol; ΔHf PbS = –98kJ/mol; electron affinities for S(g)→S- (g) is -201 kJ/mol; ) S- (g) →S2-(g) is 640kJ/mol. Ionizationenergies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formationare calculated beginning with the elements in their standard states (S8 for sulfur). Diatomicsulfur, S2, is formed from S8 (ΔHf: S2 (g) = 535 kJ/mol.
Can you just do the Born-Haber part?
Chapter 18 Solutions
EBK CHEMICAL PRINCIPLES
Ch. 18 - Prob. 1ECh. 18 - Prob. 2ECh. 18 - Prob. 3ECh. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - The electrolysis of aqueous sodium chloride...
Ch. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - Prob. 17ECh. 18 - Prob. 18ECh. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - Prob. 21ECh. 18 - Prob. 22ECh. 18 - Prob. 23ECh. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Prob. 26ECh. 18 - Prob. 27ECh. 18 - Prob. 28ECh. 18 - Prob. 29ECh. 18 - Prob. 30ECh. 18 - Prob. 31ECh. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - Prob. 35ECh. 18 - Prob. 36ECh. 18 - Prob. 37ECh. 18 - Prob. 38ECh. 18 - Prob. 39ECh. 18 - Prob. 40ECh. 18 - Prob. 41ECh. 18 - Prob. 42ECh. 18 - Prob. 43ECh. 18 - Prob. 44ECh. 18 - Prob. 45ECh. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Prob. 48ECh. 18 - Prob. 49ECh. 18 - The synthesis of ammonia gas from nitrogen gas...Ch. 18 - Prob. 51ECh. 18 - Prob. 52ECh. 18 - Prob. 53ECh. 18 - Prob. 54ECh. 18 - Prob. 55ECh. 18 - Prob. 56ECh. 18 - Prob. 57ECh. 18 - Prob. 58ECh. 18 - Prob. 59ECh. 18 - Prob. 60ECh. 18 - Prob. 61ECh. 18 - Prob. 62ECh. 18 - Prob. 63ECh. 18 - Prob. 64ECh. 18 - Prob. 65ECh. 18 - Prob. 66ECh. 18 - Prob. 67ECh. 18 - Prob. 68ECh. 18 - Prob. 69ECh. 18 - Prob. 70ECh. 18 - Prob. 71ECh. 18 - Prob. 72ECh. 18 - Prob. 73ECh. 18 - Prob. 74ECh. 18 - Prob. 75ECh. 18 - Prob. 76ECh. 18 - Prob. 77ECh. 18 - Prob. 78ECh. 18 - Prob. 79ECh. 18 - Prob. 80ECh. 18 - Prob. 81ECh. 18 - Prob. 82ECh. 18 - Prob. 83ECh. 18 - Prob. 84ECh. 18 - Prob. 85ECh. 18 - Prob. 86ECh. 18 - Prob. 87ECh. 18 - Prob. 88ECh. 18 - Prob. 89ECh. 18 - Prob. 90AECh. 18 - Prob. 91AECh. 18 - Prob. 92AECh. 18 - Prob. 93AECh. 18 - Prob. 94AECh. 18 - Prob. 95AECh. 18 - Prob. 96AECh. 18 - Prob. 97AECh. 18 - Prob. 98AECh. 18 - Prob. 99AECh. 18 - Prob. 100AECh. 18 - Prob. 101AECh. 18 - Prob. 102AECh. 18 - Prob. 103AECh. 18 - Prob. 104AECh. 18 - Prob. 105AECh. 18 - Prob. 106AECh. 18 - Prob. 107AECh. 18 - Prob. 108AECh. 18 - Prob. 109AECh. 18 - Prob. 110AECh. 18 - Prob. 111AECh. 18 - Prob. 112AECh. 18 - Hydrogen gas is being considered as a fuel for...Ch. 18 - Prob. 114AECh. 18 - Prob. 115AECh. 18 - Prob. 116AECh. 18 - Prob. 117AECh. 18 - Prob. 118AECh. 18 - Prob. 119AECh. 18 - What is the molecular structure for each of the...Ch. 18 - Prob. 121AECh. 18 - Prob. 122AECh. 18 - Prob. 123CPCh. 18 - Prob. 124CPCh. 18 - Prob. 125CPCh. 18 - Prob. 126CPCh. 18 - Prob. 127CPCh. 18 - Prob. 128CPCh. 18 - Prob. 129CPCh. 18 - Prob. 130CPCh. 18 - Prob. 131CPCh. 18 - Prob. 132CPCh. 18 - Prob. 133CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Light of appropriate wavelength can break chemical bonds. Light having λ < 240 nm can dissociate gaseous O2. It requires light with λ < 819 nm to dissociate gaseous H2O2 to 2 OH. Assume that all of the photon energy is used solely for these dissociations. (a) Calculate the energy required to dissociate (i) O2 and (ii) H2O2. (b) Consider the results of part (a). How well do they correlate with the Lewis structures of O2 and H2O2? Explain your answer.arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardAlthough nitrogen trifluoride (NF3) is a thermally stable compound, nitrogen triiodide (NI3) is known to be a highly explosive material. NI3 can be synthesized according to the equation BN(s) + 3IF(g) BF3(g) + NI3(g) a. What is the enthalpy of formation for NI3(s) given the enthalpy of reaction (307 kJ) and the enthalpies of formation for BN(s) (254 kJ/mol), IF(g) (96 kJ/mol), and BF3(g) (1136 kJ/mol)? b. It is reported that when the synthesis of NI3 is conducted using 4 moles of IF for every 1 mole of BN, one of the by-products isolated is [IF2]+[BF4]. What are the molecular geometries of the species in this by-product? What are the hybridizations of the central atoms in each species in the by-product?arrow_forward
- In which of the following molecules does the sulfur have an expanded octet? For those that do, write the Lewis structure. (a) SO2 (b) SF4 (c) SO2Cl2 (d) SF6arrow_forwardWhat is the molecular structure of the stable form of FNO2? (N is the central atom.)arrow_forwardConsider the reactions of silver metal, Ag(s), with each of the halogens: fluorine, F2(g), chlorine, Cl2(g), and bromine, Br2(l). What chapter data could you use to decide which reaction is most exothermic? Which reaction is that?arrow_forward
- a The molecule HNNH exists as a transient species in certain reactions. Give the valence bond description of this species. b Hydrogen cyanide, HCN, is a very poisonous gas or liquid with the odor of bitter almonds. Give the valence bond description of HCN. (Carbon is the central atom.)arrow_forwardThe average bond enthalpies of the C¬F and C¬Cl bonds are 485 kJ/mol and 328 kJ/mol, respectively. (a) What is the maximum wavelength that a photon can possess and still have sufficient energy to break the C ¬ F and C ¬ Clbonds, respectively?arrow_forwardThe bond energy of O2 is 498 kJ / mol. What is the maximum wavelength of the photonthat has enough energy to break the O=O bond of oxygen?arrow_forward
- Consider the following data for silver: g 107.87 mol atomic mass electronegativity 1.93 kJ 125.6 mol electron affinity kJ 731.0 mol ionization energy kJ 11.3 mol heat of fusion You may find additional useful data in the ALEKS Data tab. Does the following reaction absorb or release energy? release absorb (1) Ag 2+ (g) + e → Ag Can't be decided with the data given. yes Is it possible to calculate the amount of energy absorbed or released by reaction (1) using only the data above? no If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (1): kJ/mol Does the following reaction absorb or release energy? release absorb (2) Ag (g) + e ¯ → → Ag (g) Can't be decided with the data given. Is it possible to calculate the amount of energy absorbed or released by reaction (2) using only the data above? yes no If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (2): |KJ/molarrow_forwardWrite the condensed (noble-gas) electron configuration of Cu²⁺. For multi-digit superscripts or coefficients, use each number in succession.arrow_forwardUse the electronic configuration of zinc to explain why it forms only a +2. From which orbital(s) are the electrons removed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY