Chemistry: Atoms First
Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 18.89QP
Interpretation Introduction

Interpretation:

The equilibrium constant for the given reaction has to be calculated.

Concept Introduction:

Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work.  The free energy is represented by the letter G .  All spontaneous process is associated with the decrease of free energy in the system.  The standard free energy change (ΔG°rxn) is the difference in free energy of the reactants and products in their standard state.

ΔG°rxn=nΔGf°(Products)-nΔGf°(Reactants)

Where,

n is the number of moles

The standard electrode potential of a cell (E°cell) is the difference in electrode potential of the cathode and anode.

E°cell=E°cathodeE°anode

The relation between Gibbs free energy and cell potential: The amount of energy in a system that can be converted into useful energy is defined as free energy in thermodynamics.

Free energy and the cell potential is related by the given equation.

ΔG=-nFE

Where,

ΔG is the change in free energy

n is the number of electrons transferred

F is the Faraday constant (F=96500Cmol-1)

E is the cell potential

The relation between Gibbs free energy and equilibrium constant: Free energy and equilibrium constant are related by the given equation.

ΔG=-RTlnK

Where,

ΔG is the change in free energy

R is the universal gas constant (R=0.0821LatmK-1mol-1)

T is the temperature

K is the equilibrium constant

Blurred answer
Students have asked these similar questions
Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!!    I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!
Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!!    I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!
. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. < cleavage Bond A • CH3 + 26. t cleavage 2°C• +3°C• Bond C Cleavage CH3 ZC '2°C. 26. E Strongest 3°C. 2C. Gund Largest BDE weakest bond In that molecule a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest C bond Produces A Weakest Bond Most Strongest Bond Stable radical Strongest Gund produces least stable radicals b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 人 8°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. methyl radical •CH3 formed in bund A Cleavage

Chapter 18 Solutions

Chemistry: Atoms First

Ch. 18 - In the first scene of the animation, when a zinc...Ch. 18 - What causes the change in the potential of the...Ch. 18 - Why does the color of the blue solution in the...Ch. 18 - Prob. 18.4VCCh. 18 - Define the following terms: anode, cathode, cell...Ch. 18 - Prob. 18.4QPCh. 18 - Prob. 18.5QPCh. 18 - What is a cell diagram? Write the cell diagram for...Ch. 18 - What is the difference between the half-reactions...Ch. 18 - Discuss the spontaneity of an electrochemical...Ch. 18 - Prob. 18.9QPCh. 18 - Prob. 18.10QPCh. 18 - Calculate the standard emf of a cell that uses...Ch. 18 - Prob. 18.12QPCh. 18 - Prob. 18.13QPCh. 18 - Consider the following half-reactions....Ch. 18 - Predict whether NO3 ions will oxidize Mn2+ to MnO4...Ch. 18 - Prob. 18.16QPCh. 18 - Prob. 18.17QPCh. 18 - Prob. 18.18QPCh. 18 - Prob. 18.19QPCh. 18 - Use the information m Table 2.1, and calculate the...Ch. 18 - Prob. 18.21QPCh. 18 - Prob. 18.22QPCh. 18 - Use the standard reduction potentials to find the...Ch. 18 - Calculate G and Kc for the following reactions at...Ch. 18 - Under standard state conditions, what spontaneous...Ch. 18 - Prob. 18.26QPCh. 18 - Balance (in acidic medium) the equation for the...Ch. 18 - Prob. 18.28QPCh. 18 - Prob. 18.29QPCh. 18 - Write the Nernst equation for the following...Ch. 18 - What is the potential of a cell made up of Zn/Zn2+...Ch. 18 - Calculate E, E, and G for the following cell...Ch. 18 - Calculate the standard potential of the cell...Ch. 18 - What is the emf of a cell consisting of a Pb2+/Pb...Ch. 18 - Prob. 18.35QPCh. 18 - Calculate the emf of the following concentration...Ch. 18 - What is a battery? Describe several types of...Ch. 18 - Explain the differences between a primary galvanic...Ch. 18 - Discuss the advantages and disadvantages of fuel...Ch. 18 - The hydrogen-oxygen fuel cell is described in...Ch. 18 - Calculate the standard emf of the propane fuel...Ch. 18 - What is the difference between a galvanic cell...Ch. 18 - Prob. 18.43QPCh. 18 - Calculate the number of grams of copper metal that...Ch. 18 - Prob. 18.45QPCh. 18 - Consider the electrolysis of molten barium...Ch. 18 - Prob. 18.47QPCh. 18 - Prob. 18.48QPCh. 18 - Prob. 18.49QPCh. 18 - How many faradays of electricity are required to...Ch. 18 - Calculate the amounts of Cu and Br2 produced in...Ch. 18 - Prob. 18.52QPCh. 18 - Prob. 18.53QPCh. 18 - A constant electric current flows for 3.75 h...Ch. 18 - What is the hourly production rate of chlorine gas...Ch. 18 - Chromium plating is applied by electrolysis to...Ch. 18 - The passage of a current of 0.750 A for 25.0 min...Ch. 18 - A quantity of 0.300 g of copper was deposited from...Ch. 18 - In a certain electrolysis experiment, 1.44 g of Ag...Ch. 18 - Prob. 18.60QPCh. 18 - Prob. 18.61QPCh. 18 - Prob. 18.62QPCh. 18 - Tarnished silver contains Ag2S. The tarnish can be...Ch. 18 - Prob. 18.64QPCh. 18 - For each of the following redox reactions, (i)...Ch. 18 - Prob. 18.66QPCh. 18 - Prob. 18.67QPCh. 18 - Prob. 18.68QPCh. 18 - Prob. 18.69QPCh. 18 - Prob. 18.70QPCh. 18 - Prob. 18.71QPCh. 18 - Prob. 18.72QPCh. 18 - Prob. 18.73QPCh. 18 - Prob. 18.74QPCh. 18 - A galvanic cell consists of a silver electrode in...Ch. 18 - Explain why chlorine gas can be prepared by...Ch. 18 - Prob. 18.77QPCh. 18 - Prob. 18.78QPCh. 18 - Prob. 18.79QPCh. 18 - Prob. 18.80QPCh. 18 - Prob. 18.81QPCh. 18 - Prob. 18.82QPCh. 18 - An acidified solution was electrolyzed using...Ch. 18 - Prob. 18.84QPCh. 18 - Consider the oxidation of ammonia....Ch. 18 - Prob. 18.86QPCh. 18 - Prob. 18.87QPCh. 18 - Prob. 18.88QPCh. 18 - Prob. 18.89QPCh. 18 - Prob. 18.90QPCh. 18 - Prob. 18.91QPCh. 18 - Prob. 18.92QPCh. 18 - An aqueous solution of a platinum salt is...Ch. 18 - Prob. 18.94QPCh. 18 - Prob. 18.95QPCh. 18 - Prob. 18.96QPCh. 18 - Prob. 18.97QPCh. 18 - A silver rod and a SHE are dipped into a saturated...Ch. 18 - Prob. 18.99QPCh. 18 - Prob. 18.100QPCh. 18 - The magnitudes (but not the signs) of the standard...Ch. 18 - Prob. 18.102QPCh. 18 - Given the standard reduction potential for Au3+ in...Ch. 18 - Prob. 18.104QPCh. 18 - Prob. 18.105QPCh. 18 - Prob. 18.106QPCh. 18 - Prob. 18.107QPCh. 18 - Prob. 18.108QPCh. 18 - Prob. 18.109QPCh. 18 - Prob. 18.110QPCh. 18 - Prob. 18.111QPCh. 18 - In recent years there has been much interest in...Ch. 18 - Prob. 18.113QPCh. 18 - Prob. 18.114QPCh. 18 - Prob. 18.115QPCh. 18 - Prob. 18.116QPCh. 18 - Prob. 18.117QPCh. 18 - A galvanic cell using Mg/Mg2+ and Cu/Cu2+...Ch. 18 - Prob. 18.119QPCh. 18 - Prob. 18.120QPCh. 18 - Lead storage batteries arc rated by ampere-hours,...Ch. 18 - Use Equations 14.10 and 18.3 to calculate the emf...Ch. 18 - Prob. 18.123QPCh. 18 - A 9.00 102 mL amount of 0.200 M MgI2 solution was...Ch. 18 - Prob. 18.125QPCh. 18 - Which of the components of dental amalgam...Ch. 18 - Calculate the equilibrium constant for the...Ch. 18 - Prob. 18.128QPCh. 18 - Prob. 18.129QPCh. 18 - Prob. 18.130QPCh. 18 - Prob. 18.131QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY