Concept explainers
(a)
Interpretation:
The standard electrode potential of the given cell and the spontaneous
Concept Introduction:
Galvanic cell is an electrochemical cell which converts the chemical energy of a reaction into electrical energy.
Standard hydrogen electrode (SHE) is a reference electrode whose potential is considered to be zero volts. The potential of any other electrode is found by comparing with the SHE.
The standard electrode potential of a cell
Nernst equation is one of the important equations in
Where,
At room temperature
(a)
Answer to Problem 18.74QP
Answer:
The standard electrode potential of the cell is found to be
Explanation of Solution
Explanation:
To calculate the standard electrode potential of the cell
The standard electrode potential of the cell is the difference in standard electrode potential of the cathode and anode.
In order to determine the standard electrode potential we need to find out the half cell reactions in the cathode and anode of the given electrode.
The half cell reactions are
The standard electrode potential is calculated as given below
(b)
Interpretation:
The standard electrode potential of the given cell and the spontaneous chemical reaction in the cell has to be found. The cell potential of the given cell has to be found with the different concentrations of the hydrogen ion and a design for the
Concept Introduction:
Galvanic cell is an electrochemical cell which converts the chemical energy of a reaction into electrical energy.
Standard hydrogen electrode (SHE) is a reference electrode whose potential is considered to be zero volts. The potential of any other electrode is found by comparing with the SHE.
The standard electrode potential of a cell
Nernst equation is one of the important equations in electrochemistry. In Nernst equation the electrode potential of a cell reaction is related to the standard electrode potential, concentration or activities of the species that is involved in the chemical reaction and temperature.
Where,
At room temperature
(b)
Answer to Problem 18.74QP
Answer:
The spontaneous reaction taking place in the cell is the reduction of silver ion and oxidation of hydrogen gas.
Explanation of Solution
Explanation:
To write the spontaneous cell reaction under the given standard conditions
In the given cell composed of standard hydrogen electrode and silver electrode, The silver ions in the solution will be reduced into solid silver and the hydrogen molecules will be oxidised into hydrogen ions.
(c)
Interpretation:
The standard electrode potential of the given cell and the spontaneous chemical reaction in the cell has to be found. The cell potential of the given cell has to be found with the different concentrations of the hydrogen ion and a design for the
Concept Introduction:
Galvanic cell is an electrochemical cell which converts the chemical energy of a reaction into electrical energy.
Standard hydrogen electrode (SHE) is a reference electrode whose potential is considered to be zero volts. The potential of any other electrode is found by comparing with the SHE.
The standard electrode potential of a cell
Nernst equation is one of the important equations in electrochemistry. In Nernst equation the electrode potential of a cell reaction is related to the standard electrode potential, concentration or activities of the species that is involved in the chemical reaction and temperature.
Where,
At room temperature
(c)
Answer to Problem 18.74QP
Answer:
(i) The electrode potential, when the concentration of hydrogen ion is
(ii) The electrode potential, when the concentration of hydrogen ion is
Explanation of Solution
Explanation:
(i)
To calculate the electrode potential when the concentration of hydrogen ion is
The electrode potential of the cell can be calculated using the Nernst equation.
Where,
In the standard state all the species will have concentration equal to unity. In this case only the concentration of hydrogen ion is changed. On plugging in the concentration of the oxidised and reduced species to the given equation the electrode potential of the cell can be calculated.
(ii)
To calculate the electrode potential when the concentration of hydrogen ion is
The electrode potential of the cell can be calculated using the Nernst equation.
Where
In the standard state all the species will have concentration equal to unity. In this case only the concentration of hydrogen ion is changed. On plugging in the concentration of the oxidised and reduced species to the given equation the electrode potential of the cell can be calculated.
(d)
Interpretation:
The standard electrode potential of the given cell and the spontaneous chemical reaction in the cell has to be found. The cell potential of the given cell has to be found with the different concentrations of the hydrogen ion and a design for the
Concept Introduction:
Galvanic cell is an electrochemical cell which converts the chemical energy of a reaction into electrical energy.
Standard hydrogen electrode (SHE) is a reference electrode whose potential is considered to be zero volts. The potential of any other electrode is found by comparing with the SHE.
The standard electrode potential of a cell
Nernst equation is one of the important equations in electrochemistry. In Nernst equation the electrode potential of a cell reaction is related to the standard electrode potential, concentration or activities of the species that is involved in the chemical reaction and temperature.
Where,
At room temperature
(d)
Answer to Problem 18.74QP
Answer:
The given cell is sensitive to the hydrogen in concentration. Hence it can be used as the
Explanation of Solution
Explanation:
To suggest a design for a
From the results obtained in the question (c) it is clear that the given cell itself can be used as a
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry: Atoms First
- (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forward
- Print Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning