![Chemistry: Atoms First](https://www.bartleby.com/isbn_cover_images/9781259638138/9781259638138_largeCoverImage.gif)
Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.1, Problem 18.1.1SR
Interpretation Introduction
Interpretation:
Need to identify the non-
Concept introduction:
Three form of definition can be given for oxidation and reduction.
- 1) Gain of oxygen is called oxidation and removal of oxygen is called reduction.
- 2) Removal of hydrogen is called oxidation and addition of hydrogen is called reduction.
- 3) In terms of electrons oxidation is defined as removal of electrons and reduction is defined as addition of electrons.
In a redox reaction one species will get oxidized by releasing electron, while the other species will accept electrons and get reduced. Generally reaction always involves the transfer of electrons from one atom to another.
To find: The non-redox reaction among the set of given reactions
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Devise a synthesis to prepare 4-tert-butyl-2-nitrotoluene from toluene. Complete the following reaction scheme.
Part 1 of 4
Step 1
Step 2
A
B
Draw the structure for compound B, 4-tert-butyl-2-nitrotoluene.
Click and drag to start drawing a
structure.
'O
Х
ப:
Show work. don't give Ai generated solution
21. Zn
Cl₂→
ZnCl2
22.
ZnCO3
ZnO
CO₂
23.
Mg +
Sg
MgS
24.
Fe +
Cl₂
FeCl3
25. Ag +
S8
Ag₂S
26. K
S8
K₂S
27.
Al
HCI
AlCl3
H2
28. Mg
H3PO4
Mg3(PO4)2
+
H₂
29.
Cu +
AgNO3
Cu(NO3)2 +
Ag
30. Al +
Pb(NO3)2
Pb +
Al(NO3)3
31. Zn +
Sn(NO3)4
Zn(NO3)2
Sn
32. Cl2 +
All 3
AlCl3
_ 12
33. Br2 +
Cul
CuBr
12
34. KBr +
Pb(NO3)2
KNO3
PbBr2
These next ones have an element shared between two different compounds. The Total amount
in the Reactatnt still needs to equal the total amount in the product.
35.H₂O2
←
H₂O
+
0₂
36.
C₂Ho
CO2 +
H₂O
37. Zn +
HCI →
ZnCl+
H₂
38. NH3 +
_HCl →
NH.C
39. Mg(OH)2 + H3PO4
→
H₂O+
Mg3(PO4)2
40. NHẠOH +
FeCl3
NH4Cl +
Fe(OH)3
Chapter 18 Solutions
Chemistry: Atoms First
Ch. 18.1 - Permanganate ion and iodide ion react in basic...Ch. 18.1 - Use the half-reaction method to balance the...Ch. 18.1 - Use the half-reaction method to balance the...Ch. 18.1 - Prob. 18.1.1SRCh. 18.1 - MnO4 and C2O42 react in basic solution to form...Ch. 18.3 - A galvanic cell consists of an Mg electrode in a...Ch. 18.3 - Determine the overall cell reaction and Ecell (at...Ch. 18.3 - A galvanic cell with Ecell = 0.30 V can be...Ch. 18 - Balance the following redox equations by the...Ch. 18 - Balance the following redox equations by the...
Ch. 18 - In the first scene of the animation, when a zinc...Ch. 18 - What causes the change in the potential of the...Ch. 18 - Why does the color of the blue solution in the...Ch. 18 - Prob. 18.4VCCh. 18 - Define the following terms: anode, cathode, cell...Ch. 18 - Prob. 18.4QPCh. 18 - Prob. 18.5QPCh. 18 - What is a cell diagram? Write the cell diagram for...Ch. 18 - What is the difference between the half-reactions...Ch. 18 - Discuss the spontaneity of an electrochemical...Ch. 18 - Prob. 18.9QPCh. 18 - Prob. 18.10QPCh. 18 - Calculate the standard emf of a cell that uses...Ch. 18 - Prob. 18.12QPCh. 18 - Prob. 18.13QPCh. 18 - Consider the following half-reactions....Ch. 18 - Predict whether NO3 ions will oxidize Mn2+ to MnO4...Ch. 18 - Prob. 18.16QPCh. 18 - Prob. 18.17QPCh. 18 - Prob. 18.18QPCh. 18 - Prob. 18.19QPCh. 18 - Use the information m Table 2.1, and calculate the...Ch. 18 - Prob. 18.21QPCh. 18 - Prob. 18.22QPCh. 18 - Use the standard reduction potentials to find the...Ch. 18 - Calculate G and Kc for the following reactions at...Ch. 18 - Under standard state conditions, what spontaneous...Ch. 18 - Prob. 18.26QPCh. 18 - Balance (in acidic medium) the equation for the...Ch. 18 - Prob. 18.28QPCh. 18 - Prob. 18.29QPCh. 18 - Write the Nernst equation for the following...Ch. 18 - What is the potential of a cell made up of Zn/Zn2+...Ch. 18 - Calculate E, E, and G for the following cell...Ch. 18 - Calculate the standard potential of the cell...Ch. 18 - What is the emf of a cell consisting of a Pb2+/Pb...Ch. 18 - Prob. 18.35QPCh. 18 - Calculate the emf of the following concentration...Ch. 18 - What is a battery? Describe several types of...Ch. 18 - Explain the differences between a primary galvanic...Ch. 18 - Discuss the advantages and disadvantages of fuel...Ch. 18 - The hydrogen-oxygen fuel cell is described in...Ch. 18 - Calculate the standard emf of the propane fuel...Ch. 18 - What is the difference between a galvanic cell...Ch. 18 - Prob. 18.43QPCh. 18 - Calculate the number of grams of copper metal that...Ch. 18 - Prob. 18.45QPCh. 18 - Consider the electrolysis of molten barium...Ch. 18 - Prob. 18.47QPCh. 18 - Prob. 18.48QPCh. 18 - Prob. 18.49QPCh. 18 - How many faradays of electricity are required to...Ch. 18 - Calculate the amounts of Cu and Br2 produced in...Ch. 18 - Prob. 18.52QPCh. 18 - Prob. 18.53QPCh. 18 - A constant electric current flows for 3.75 h...Ch. 18 - What is the hourly production rate of chlorine gas...Ch. 18 - Chromium plating is applied by electrolysis to...Ch. 18 - The passage of a current of 0.750 A for 25.0 min...Ch. 18 - A quantity of 0.300 g of copper was deposited from...Ch. 18 - In a certain electrolysis experiment, 1.44 g of Ag...Ch. 18 - Prob. 18.60QPCh. 18 - Prob. 18.61QPCh. 18 - Prob. 18.62QPCh. 18 - Tarnished silver contains Ag2S. The tarnish can be...Ch. 18 - Prob. 18.64QPCh. 18 - For each of the following redox reactions, (i)...Ch. 18 - Prob. 18.66QPCh. 18 - Prob. 18.67QPCh. 18 - Prob. 18.68QPCh. 18 - Prob. 18.69QPCh. 18 - Prob. 18.70QPCh. 18 - Prob. 18.71QPCh. 18 - Prob. 18.72QPCh. 18 - Prob. 18.73QPCh. 18 - Prob. 18.74QPCh. 18 - A galvanic cell consists of a silver electrode in...Ch. 18 - Explain why chlorine gas can be prepared by...Ch. 18 - Prob. 18.77QPCh. 18 - Prob. 18.78QPCh. 18 - Prob. 18.79QPCh. 18 - Prob. 18.80QPCh. 18 - Prob. 18.81QPCh. 18 - Prob. 18.82QPCh. 18 - An acidified solution was electrolyzed using...Ch. 18 - Prob. 18.84QPCh. 18 - Consider the oxidation of ammonia....Ch. 18 - Prob. 18.86QPCh. 18 - Prob. 18.87QPCh. 18 - Prob. 18.88QPCh. 18 - Prob. 18.89QPCh. 18 - Prob. 18.90QPCh. 18 - Prob. 18.91QPCh. 18 - Prob. 18.92QPCh. 18 - An aqueous solution of a platinum salt is...Ch. 18 - Prob. 18.94QPCh. 18 - Prob. 18.95QPCh. 18 - Prob. 18.96QPCh. 18 - Prob. 18.97QPCh. 18 - A silver rod and a SHE are dipped into a saturated...Ch. 18 - Prob. 18.99QPCh. 18 - Prob. 18.100QPCh. 18 - The magnitudes (but not the signs) of the standard...Ch. 18 - Prob. 18.102QPCh. 18 - Given the standard reduction potential for Au3+ in...Ch. 18 - Prob. 18.104QPCh. 18 - Prob. 18.105QPCh. 18 - Prob. 18.106QPCh. 18 - Prob. 18.107QPCh. 18 - Prob. 18.108QPCh. 18 - Prob. 18.109QPCh. 18 - Prob. 18.110QPCh. 18 - Prob. 18.111QPCh. 18 - In recent years there has been much interest in...Ch. 18 - Prob. 18.113QPCh. 18 - Prob. 18.114QPCh. 18 - Prob. 18.115QPCh. 18 - Prob. 18.116QPCh. 18 - Prob. 18.117QPCh. 18 - A galvanic cell using Mg/Mg2+ and Cu/Cu2+...Ch. 18 - Prob. 18.119QPCh. 18 - Prob. 18.120QPCh. 18 - Lead storage batteries arc rated by ampere-hours,...Ch. 18 - Use Equations 14.10 and 18.3 to calculate the emf...Ch. 18 - Prob. 18.123QPCh. 18 - A 9.00 102 mL amount of 0.200 M MgI2 solution was...Ch. 18 - Prob. 18.125QPCh. 18 - Which of the components of dental amalgam...Ch. 18 - Calculate the equilibrium constant for the...Ch. 18 - Prob. 18.128QPCh. 18 - Prob. 18.129QPCh. 18 - Prob. 18.130QPCh. 18 - Prob. 18.131QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Don't used hand raiting and don't used Ai solutionarrow_forwardBalance the following equations Synthesis Ca 1. Mg + Cl₂ → MgCl2Syn 2. Al + 302 -> 2A1203Com 3. P4 + 502 4. Bi + + Cl₂ 5. H2 + N2 ↑ 6. Zn + 02 7. Cu + 02 8. Sn + 9. Na 10. 11. AR Ag + Cl₂ S8 I2 ↑ ↑ ↑ ↑ Pb + 12. Al + Br₂ 13. Fe + F2 ↑ 14. Sn + 15. Sb + 16. Ca + 17. Ba + 02 ↑ ↑ ↑ P4010 Com BiCl, Syn NH3 Syn Zno Com Cu2O com SnCl4 Syn Na2S Syn Agl Syn Pbo Com AlBr, yn FeF3 Syn Sno com Sb₂Ss Syn Cao cơm Bao cơm 18. Mg + P4 -> Mg3P2 Syn 19. K + K&N Syn ZnS Syn 20. Znarrow_forwardNonearrow_forward
- Considering the important roles of biothiols in lysosomes of live organisms, and unique photophysical / photochemical properties of ruthenium(II) complexes, a novel ruthenium(II) complex, Ru-2, has been developed as a molecular probe for phosphorescence and time-gated luminescence assay of biothiols in human sera, live cells, and in vivo. Ru-2 is weakly luminescent due to the effective photoinduced electron transfer (PET) from Ru(II) luminophore to electron acceptor, 2,4-dinitrobenzene-sulfonyl (DNBS). In the presence of biothiols, such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy), the emission of Ru-2 solution was switched ON, as a result of the cleavage of quencher to form the product, Ru-1. Ru-2 showed high selectivity and sensitivity for the detection of biothiols under physiological conditions, with detection limits of 62 nM, 146 nM, and 115 nM for GSH, Cys, and Hcy, respectively. The emission lifetimes of Ru-1 and Ru-2 were measured to be 405 and 474 ns,…arrow_forwardIn an effort to reduce costs and increase the accessibility of instruments that utilize spectrophotometric detection, some researchers are beginning to experiment with 3D-printed parts. One example of this is the 3D-printed flow cell, shown at right. This device was made using polylactic acid and accommodates a LED at one end and a detector at the other. It can be used for standalone flow injection spectrophotometry or coupled to a chromatographic separation to be used as a detector. Explain why the sensitivity varies with the length of the flow cell, as shown in the data below. Could this setup be used for fluorescence analysis? Why or why not?arrow_forwardThe dark lines in the solar spectrum were discovered by Wollaston and cataloged by Fraunhofer in the early days of the 19th century. Some years later, Kirchhoff explained the appearance of the dark lines: the sun was acting as a continuum light source and metals in the ground state in its atmosphere were absorbing characteristic narrow regions of the spectrum. This discovery eventually spawned atomic absorption spectrometry, which became a routine technique for chemical analysis in the mid-20th century. Laboratory-based atomic absorption spectrometers differ from the original observation of the Fraunhofer lines because they have always employed a separate light source and atomizer. This article describes a novel atomic absorption device that employs a single source, the tungsten coil, as both the generator of continuum radiation and the atomizer of the analytes. A 25-μL aliquot of sample is placed on the tungsten filament removed from a commercially available 150-W light bulb. The…arrow_forward
- Challenging samples: 1. Metal complexes with low volatility are often difficult to analyze when performing atomic absorption measurements because the atomization efficiency is reduced to unacceptably low levels. Devise a strategy or strategies for eliminating the problem of a non-volatile metal complex? Explain how you would do that. 2. Devise a strategy to overcome unwanted ionization of the analyte? Explain what it would be. 3. Devise a general method that can be used to account for the presence of unknown matrix effects.arrow_forwardDon't used hand raitingarrow_forwardDon't used hand raiting don't used Ai solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285869759/9781285869759_smallCoverImage.gif)
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning