Concept explainers
(a)
Interpretation:
The
Concept Introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Where, n is the number of moles
The relation between Gibbs free energy and cell potential: The amount of energy in a system that can be converted into useful energy is defined as free energy in
Free energy and the cell potential is related by the given equation.
Where,
Nernst equation is one of the important equations in
Where,
At room temperature
Ideal gas equation is an equation that is describing the state of a imaginary ideal gas.
Where,
(a)
Answer to Problem 18.115QP
Answer:
The half cell reactions of the given cell,
The standard
Explanation of Solution
Explanation:
To record the given data
To write the half cell reactions and overall reaction
The half cell reactions are,
Overall reaction,
To find the
The of
To find the
Using the value of free energy and the number of electrons transferred the
On rearranging the equation we get,
(b)
Interpretation:
The
Concept Introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Where, n is the number of moles
The relation between Gibbs free energy and cell potential: The amount of energy in a system that can be converted into useful energy is defined as free energy in thermodynamics.
Free energy and the cell potential is related by the given equation.
Where,
Nernst equation is one of the important equations in electrochemistry. In Nernst equation the electrode potential of a cell reaction is related to the standard electrode potential, concentration or activities of the species that is involved in the chemical reaction and temperature.
Where,
At room temperature
Ideal gas equation is an equation that is describing the state of a imaginary ideal gas.
Where,
(b)
Answer to Problem 18.115QP
Answer:
The
Explanation of Solution
Explanation:
To record the given data
Partial pressure of oxygen
To calculate the
The
(c)
Interpretation:
The
Concept Introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Where, n is the number of moles
The relation between Gibbs free energy and cell potential: The amount of energy in a system that can be converted into useful energy is defined as free energy in thermodynamics.
Free energy and the cell potential is related by the given equation.
Where,
Nernst equation is one of the important equations in electrochemistry. In Nernst equation the electrode potential of a cell reaction is related to the standard electrode potential, concentration or activities of the species that is involved in the chemical reaction and temperature.
Where,
At room temperature
Ideal gas equation is an equation that is describing the state of a imaginary ideal gas.
Where,
(c)
Answer to Problem 18.115QP
Answer:
The energy density of the zinc electrode is found to be
Explanation of Solution
Explanation:
To record the given data
Amount of zinc
Molecular weight of zinc
To calculate the number of moles of zinc
Number of moles of zinc in
To calculate the energy density of zinc electrode
Free energy is the maximum amount of energy in the system that can be converted into useful work. Energy density can be obtained by multiplying the free energy value with the number of moles of zinc.
(d)
Interpretation:
The
Concept Introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Where, n is the number of moles
The relation between Gibbs free energy and cell potential: The amount of energy in a system that can be converted into useful energy is defined as free energy in thermodynamics.
Free energy and the cell potential is related by the given equation.
Where,
Nernst equation is one of the important equations in electrochemistry. In Nernst equation the electrode potential of a cell reaction is related to the standard electrode potential, concentration or activities of the species that is involved in the chemical reaction and temperature.
Where,
At room temperature
Ideal gas equation is an equation that is describing the state of a imaginary ideal gas.
Where,
(d)
Answer to Problem 18.115QP
Answer:
The amount of air supplied to the battery in each second is found to be
Explanation of Solution
Explanation:
To record the given data
Amount of current derived from the cell
To calculate the number of moles of electrons required for producing given amount of charge
Charge produced and the numbers of moles of electrons transferred are related by the following equation.
The number of moles of electrons transferred,
To calculate the number of moles of oxygen gas reduced by
From the equation for the cell reaction we have seen that
To calculate the volume of oxygen when the partial pressure is
The volume of oxygen at
To calculate the volume of air required at each second.
The volume of air required at each second is found as given below.
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry: Atoms First
- Nonearrow_forwardNonearrow_forwardman Campus Depa (a) Draw the three products (constitutional isomers) obtained when 2-methyl-3-hexene reacts with water and a trace of H2SO4. Hint: one product forms as the result of a 1,2-hydride shift. (1.5 pts) This is the acid-catalyzed alkene hydration reaction.arrow_forward
- (6 pts - 2 pts each part) Although we focused our discussion on hydrogen light emission, all elements have distinctive emission spectra. Sodium (Na) is famous for its spectrum being dominated by two yellow emission lines at 589.0 and 589.6 nm, respectively. These lines result from electrons relaxing to the 3s subshell. a. What is the photon energy (in J) for one of these emission lines? Show your work. b. To what electronic transition in hydrogen is this photon energy closest to? Justify your answer-you shouldn't need to do numerical calculations. c. Consider the 3s subshell energy for Na - use 0 eV as the reference point for n=∞. What is the energy of the subshell that the electron relaxes from? Choose the same emission line that you did for part (a) and show your work.arrow_forwardNonearrow_forward(9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception to the general ionization energy (IE) trend. For the two elements involved, answer the following questions. Be sure to cite sources for all physical data that you use. a. (2 pts) Identify the two elements and write their electronic configurations. b. (2 pts) Based on their configurations, propose a reason for the IE trend exception. c. (5 pts) Calculate effective nuclear charges for the last electron in each element and the Allred-Rochow electronegativity values for the two elements. Can any of these values explain the IE trend exception? Explain how (not) - include a description of how IE relates to electronegativity.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning