![Chemistry: Atoms First](https://www.bartleby.com/isbn_cover_images/9781259638138/9781259638138_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
Need to write the cell reaction for the
Concept introduction:
Since the electrolysis of AgNO3 takes in aqueous solution, reduction of Ag+ was done by the electrons obtained by the oxidation of water. Mass of the metal produced was given, from that number of moles of Ag produced can be calculated. For the reduction of one moles of Ag+ ion, one mole of electron was need. So the number of mole of silver produced is equal to the number of moles of electrons needed. The coulomb of charges can be attained by the multiplication of moles of electron with Faraday constant.
To find: Cell reaction of the electrolysis of AgNO3 in aqueous solution and number of charges need to deposit 0.67g of silver.
(b)
Interpretation:
Need to write the cell reaction for the electrolysis of aqueous AgNO3 solution and calculate the amount of charges used to deposit 0.67g of silver.
Concept introduction:
Since the electrolysis of AgNO3 takes in aqueous solution, reduction of Ag+ was done by the electrons obtained by the oxidation of water. Mass of the metal produced was given, from that number of moles of Ag produced can be calculated. For the reduction of one moles of Ag+ ion, one mole of electron was need. So the number of mole of silver produced is equal to the number of moles of electrons needed. The coulomb of charges can be attained by the multiplication of moles of electron with Faraday constant.
To find: Cell reaction of the electrolysis of AgNO3 in aqueous solution and number of charges need to deposit 0.67g of silver.
(c)
Interpretation:
Need to write the cell reaction for the electrolysis of aqueous AgNO3 solution and calculate the amount of charges used to deposit 0.67g of silver.
Concept introduction:
Since the electrolysis of AgNO3 takes in aqueous solution, reduction of Ag+ was done by the electrons obtained by the oxidation of water. Mass of the metal produced was given, from that number of moles of Ag produced can be calculated. For the reduction of one moles of Ag+ ion, one mole of electron was need. So the number of mole of silver produced is equal to the number of moles of electrons needed. The coulomb of charges can be attained by the multiplication of moles of electron with Faraday constant.
To find: Cell reaction of the electrolysis of AgNO3 in aqueous solution and number of charges need to deposit 0.67g of silver.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 18 Solutions
Chemistry: Atoms First
- टे Predict the major products of this organic reaction. Be sure to use wedge and dash bonds when necessary, for example to distinguish between different major products. ☐ ☐ : ☐ + NaOH HO 2 Click and drag to start drawing a structure.arrow_forwardShown below are five NMR spectra for five different C6H10O2 compounds. For each spectrum, draw the structure of the compound, and assign the spectrum by labeling H's in your structure (or in a second drawing of the structure) with the chemical shifts of the corresponding signals (which can be estimated to nearest 0.1 ppm). IR information is also provided. As a reminder, a peak near 1700 cm-1 is consistent with the presence of a carbonyl (C=O), and a peak near 3300 cm-1 is consistent with the presence of an O–H. Extra information: For C6H10O2 , there must be either 2 double bonds, or 1 triple bond, or two rings to account for the unsaturation. There is no two rings for this problem. A strong band was observed in the IR at 1717 cm-1arrow_forwardPredict the major products of the organic reaction below. : ☐ + Х ك OH 1. NaH 2. CH₂Br Click and drag to start drawing a structure.arrow_forward
- NG NC 15Show all the steps you would use to synthesize the following products shown below using benzene and any organic reagent 4 carbons or less as your starting material in addition to any inorganic reagents that you have learned. NO 2 NC SO3H NO2 OHarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardShow work...don't give Ai generated solutionarrow_forward
- 1 Please provide an efficient synthesis of the product below from the starting material. Use the starting material as the ONLY source of carbon atoms. Show the synthesis of each compound that would be used in the overall synthesis of the product. [This synthesis uses alkyne and alcohol chemistry.]arrow_forward10- 4000 20 20 30- %Reflectance 60 50- 09 60- 40- Date: Thu Feb 06 17:30:02 2025 (GMT-05:0(UnknownP Scans: 8 Resolution: 2.000 70 70 88 80 3500 3000 2500 90 100 00 Wavenumbers (cm-1) 2000 1500 2983.10 2359.13 1602.52 1584.22 1451.19 1391.87 1367.07 1314.37 1174.34 1070.13 1027.33 1714.16 1269.47 1000 1106.08 1001.14 937.02 873.60 850.20 780.22 686.91 674.38 643.09 617.98 02/06/25 16:38:20arrow_forwardd. Draw arrow-pushing mechanism for an enzymatic retro-aldol reaction of the following hexose. Use B: and/or HA as needed. OH OH سية HO OH OHarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079113/9781305079113_smallCoverImage.gif)