
(a)
Interpretation:
The change in entropy for the given solid melting processes has to be identified.
Concept Information:
Where,
(b)
Interpretation:
The change in entropy for the given liquid freezes processes has to be identified
Concept Information:
In thermodynamics, entropy refers to randomness of the system. Second Law of thermodynamics states that the entropy of the universe is increasing. That is, the system is always tending to have more disorders in it. Let us consider the example of diffusion of gas molecule to understand the concept of entropy. When a perfume bottle is opened the fragrance is immediately spread into the surroundings. Inside the bottle the gas molecules are close to each other and entropy is less. Once the bottle is opened the gas molecules escapes into the surroundings and have more disorderly arrangements.
The SI unit of entropy is
(c)
Interpretation:
The change in entropy for the given liquid boiling processes has to be identified
Concept Information:
Thermodynamics is the branch of science that relates heat and energy in a system. The four laws of thermodynamics explain the fundamental quantities such as temperature, energy and randomness in a system. Entropy is the measure of randomness in a system. For a spontaneous process there is always a positive change in entropy. Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Where,
(d)
Interpretation:
The change in entropy for the given vapor into solid converting processes has to be identified
Concept Information:
Thermodynamics is the branch of science that relates heat and energy in a system. The four laws of thermodynamics explain the fundamental quantities such as temperature, energy and randomness in a system. Entropy is the measure of randomness in a system. For a spontaneous process there is always a positive change in entropy. Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Where,
(e)
Interpretation:
The change in entropy for the given vapor condenses to liquid processes has to be identified
Concept Information:
Thermodynamics is the branch of science that relates heat and energy in a system. The four laws of thermodynamics explain the fundamental quantities such as temperature, energy and randomness in a system. Entropy is the measure of randomness in a system. For a spontaneous process there is always a positive change in entropy. Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Where,
(f)
Interpretation:
The change in entropy for the given solid sublimes processes has to be identified
Concept Information:
Thermodynamics is the branch of science that relates heat and energy in a system. The four laws of thermodynamics explain the fundamental quantities such as temperature, energy and randomness in a system. Entropy is the measure of randomness in a system. For a spontaneous process there is always a positive change in entropy. Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Where,
(g)
Interpretation:
The change in entropy for the given urea dissolving processes has to be identified
Concept Information:
Thermodynamics is the branch of science that relates heat and energy in a system. The four laws of thermodynamics explain the fundamental quantities such as temperature, energy and randomness in a system. Entropy is the measure of randomness in a system. For a spontaneous process there is always a positive change in entropy. Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Where,

Want to see the full answer?
Check out a sample textbook solution
Chapter 18 Solutions
General Chemistry
- Draw the products of the stronger acid protonating the other reactant. H3C NH2 NH2 KEq H3C-CH₂ 1. Product acid Product basearrow_forwardWhat alkene or alkyne yields the following products after oxidative cleavage with ozone? Click the "draw structure" button to launch the drawing utility. draw structure ... andarrow_forwardDraw the products of the stronger acid protonating the other reactant. H3C-C=C-4 NH2 KEq CH H3C `CH3 Product acid Product basearrow_forward
- 2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). C5H10 Br H-Br CH2Cl2 + enant.arrow_forwardDraw the products of the stronger acid protonating the other reactant. KEq H₂C-O-H H3C OH Product acid Product basearrow_forwardDraw the products of the stronger acid protonating the other reactant. OH KEq CH H3C H3C `CH3 Product acid Product basearrow_forward
- 2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). Ph H-I CH2Cl2arrow_forward3 attempts left Check my work Draw the products formed in the following oxidative cleavage. [1] 03 [2] H₂O draw structure ... lower mass product draw structure ... higher mass productarrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). H-Br CH2Cl2arrow_forward
- Write the aldol condensation mechanism and product for benzaldehyde + cyclohexanone in a base. Then trans-cinnamaldehyde + acetone in base. Then, trans-cinnamaldehyde + cyclohexanone in a base.arrow_forwardClick the "draw structure" button to launch the drawing utility. Draw the structure of the alkene that yields the following set of oxidative cleavage products? draw structure ...arrow_forwardWrite the mechanism for the reaction.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





